Ferdinando Fioretto


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Speculative Diffusion Decoding: Accelerating Language Generation through Diffusion
Jacob K Christopher | Brian R. Bartoldson | Tal Ben-Nun | Michael Cardei | Bhavya Kailkhura | Ferdinando Fioretto
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Speculative decoding has emerged as a widely adopted method to accelerate large language model inference without sacrificing the quality of the model outputs. While this technique has facilitated notable speed improvements by enabling parallel sequence verification, its efficiency remains inherently limited by the reliance on incremental token generation in existing draft models. To overcome this limitation, this paper proposes an adaptation of speculative decoding which uses discrete diffusion models to generate draft sequences. This allows parallelization of both the drafting and verification steps, providing significant speedups to the inference process. Our proposed approach, *Speculative Diffusion Decoding (SpecDiff)*, is validated on standard language generation benchmarks and empirically demonstrated to provide up to 7.2x speedups over standard generation processes and up to 1.75x speedups over existing speculative decoding approaches.