Fengyuan Hu


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Eliciting In-Context Learning in Vision-Language Models for Videos Through Curated Data Distributional Properties
Keunwoo Peter Yu | Zheyuan Zhang | Fengyuan Hu | Shane Storks | Joyce Chai
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

2023

pdf bib
From Heuristic to Analytic: Cognitively Motivated Strategies for Coherent Physical Commonsense Reasoning
Zheyuan Zhang | Shane Storks | Fengyuan Hu | Sungryull Sohn | Moontae Lee | Honglak Lee | Joyce Chai
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Pre-trained language models (PLMs) have shown impressive performance in various language tasks. However, they are prone to spurious correlations, and often generate illusory information. In real-world applications, PLMs should justify decisions with formalized, coherent reasoning chains, but this challenge remains under-explored. Cognitive psychology theorizes that humans are capable of utilizing fast and intuitive *heuristic* thinking to make decisions based on past experience, then rationalizing the decisions through slower and deliberative *analytic* reasoning. We incorporate these interlinked dual processes in fine-tuning and in-context learning with PLMs, applying them to two language understanding tasks that require coherent physical commonsense reasoning. We show that our proposed Heuristic-Analytic Reasoning (HAR) strategies drastically improve the coherence of rationalizations for model decisions, yielding state-of-the-art results on Tiered Reasoning for Intuitive Physics (TRIP). We also find that this improved coherence is a direct result of more faithful attention to relevant language context in each step of reasoning. Our findings suggest that human-like reasoning strategies can effectively improve the coherence and reliability of PLM reasoning.