Feng Xu


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
UniCOQE: Unified Comparative Opinion Quintuple Extraction As A Set
Zinong Yang | Feng Xu | Jianfei Yu | Rui Xia
Findings of the Association for Computational Linguistics: ACL 2023

Comparative Opinion Quintuple Extraction (COQE) aims to identify comparative opinion sentences in product reviews, extract comparative opinion elements in the sentences, and then incorporate them into quintuples. Existing methods decompose the COQE task into multiple primary subtasks and then solve them in a pipeline manner. However, these approaches ignore the intrinsic connection between subtasks and the error propagation among stages. This paper proposes a unified generative model, UniCOQE, to solve the COQE task in one shot. We design a generative template where all the comparative tuples are concatenated as the target output sequence. However, the multiple tuples are inherently not an ordered sequence but an unordered set. The pre-defined order will force the generative model to learn a false order bias and hinge the model’s training. To alleviate this bias, we introduce a new “predict-and-assign” training paradigm that models the golden tuples as a set. Specifically, we utilize a set-matching strategy to find the optimal order of tuples. The experimental results on multiple benchmarks show that our unified generative model significantly outperforms the SOTA method, and ablation experiments prove the effectiveness of the set-matching strategy.