Feijie Wu


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
SHIELD: Evaluation and Defense Strategies for Copyright Compliance in LLM Text Generation
Xiaoze Liu | Ting Sun | Tianyang Xu | Feijie Wu | Cunxiang Wang | Xiaoqian Wang | Jing Gao
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Large Language Models (LLMs) have transformed machine learning but raised significant legal concerns due to their potential to produce text that infringes on copyrights, resulting in several high-profile lawsuits. The legal landscape is struggling to keep pace with these rapid advancements, with ongoing debates about whether generated text might plagiarize copyrighted materials. Current LLMs may infringe on copyrights or overly restrict non-copyrighted texts, leading to these challenges: (i) the need for a comprehensive evaluation benchmark to assess copyright compliance from multiple aspects; (ii) evaluating robustness against safeguard bypassing attacks; and (iii) developing effective defenses targeted against the generation of copyrighted text.To tackle these challenges, we introduce a curated dataset to evaluate methods, test attack strategies, and propose a lightweight, real-time defense mechanism to prevent the generation of copyrighted text, ensuring the safe and lawful use of LLMs. Our experiments demonstrate that current LLMs frequently output copyrighted text, and that jailbreaking attacks can significantly increase the volume of copyrighted output. Our proposed defense mechanism substantially reduces the volume of copyrighted text generated by LLMs by effectively refusing malicious requests.