This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
FeiDong
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Neural network models have recently been applied to the task of automatic essay scoring, giving promising results. Existing work used recurrent neural networks and convolutional neural networks to model input essays, giving grades based on a single vector representation of the essay. On the other hand, the relative advantages of RNNs and CNNs have not been compared. In addition, different parts of the essay can contribute differently for scoring, which is not captured by existing models. We address these issues by building a hierarchical sentence-document model to represent essays, using the attention mechanism to automatically decide the relative weights of words and sentences. Results show that our model outperforms the previous state-of-the-art methods, demonstrating the effectiveness of the attention mechanism.
Neural word segmentation research has benefited from large-scale raw texts by leveraging them for pretraining character and word embeddings. On the other hand, statistical segmentation research has exploited richer sources of external information, such as punctuation, automatic segmentation and POS. We investigate the effectiveness of a range of external training sources for neural word segmentation by building a modular segmentation model, pretraining the most important submodule using rich external sources. Results show that such pretraining significantly improves the model, leading to accuracies competitive to the best methods on six benchmarks.
We propose a neural reranking system for named entity recognition (NER), leverages recurrent neural network models to learn sentence-level patterns that involve named entity mentions. In particular, given an output sentence produced by a baseline NER model, we replace all entity mentions, such as Barack Obama, into their entity types, such as PER. The resulting sentence patterns contain direct output information, yet is less sparse without specific named entities. For example, “PER was born in LOC” can be such a pattern. LSTM and CNN structures are utilised for learning deep representations of such sentences for reranking. Results show that our system can significantly improve the NER accuracies over two different baselines, giving the best reported results on a standard benchmark.