Farrukh Bin Rashid


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Fathom: A Fast and Modular RAG Pipeline for Fact-Checking
Farrukh Bin Rashid | Saqib Hakak
Proceedings of the Eighth Fact Extraction and VERification Workshop (FEVER)

We present Fathom, a Retrieval-Augmented Generation (RAG) pipeline for automated fact-checking, built entirely using lightweight open-source language models. The system begins with HyDE-style question generation to expand the context around each claim, followed by a dual-stage retrieval process using BM25 and semantic similarity to gather relevant evidence. Finally, a lightweight LLM performs veracity prediction, producing both a verdict and supporting rationale. Despite relying on smaller models, our system achieved an AVeriTeC score of 0.2043 on the test set, a 0.99% absolute improvement over the baseline and 0.378 on the dev set, marking a 27.7% absolute improvement.