Faria Binte Kader


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
“When Words Fail, Emojis Prevail”: A Novel Architecture for Generating Sarcastic Sentences With Emoji Using Valence Reversal and Semantic Incongruity
Faria Binte Kader | Nafisa Hossain Nujat | Tasmia Binte Sogir | Mohsinul Kabir | Hasan Mahmud | Md Kamrul Hasan
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)

Sarcasm is a form of figurative language that serves as a humorous tool for mockery and ridicule. We present a novel architecture for sarcasm generation with emoji from a non-sarcastic input sentence in English. We divide the generation task into two sub tasks: one for generating textual sarcasm and another for collecting emojis associated with those sarcastic sentences. Two key elements of sarcasm are incorporated into the textual sarcasm generation task: valence reversal and semantic incongruity with context, where the context may involve shared commonsense or general knowledge between the speaker and their audience. The majority of existing sarcasm generation works have focused on this textual form. However, in the real world, when written texts fall short of effectively capturing the emotional cues of spoken and face-to-face communication, people often opt for emojis to accurately express their emotions. Due to the wide range of applications of emojis, incorporating appropriate emojis to generate textual sarcastic sentences helps advance sarcasm generation. We conclude our study by evaluating the generated sarcastic sentences using human judgement. All the codes and data used in this study has been made publicly available.