Fanyi Wu


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
THCM-CAL: Temporal-Hierarchical Causal Modelling with Conformal Calibration for Clinical Risk Prediction
Xin Zhang | Qiyu Wei | Yingjie Zhu | Fanyi Wu | Sophia Ananiadou
Findings of the Association for Computational Linguistics: EMNLP 2025

Automated clinical risk prediction from electronic health records (EHRs) demands modeling both structured diagnostic codes and unstructured narrative notes. However, most prior approaches either handle these modalities separately or rely on simplistic fusion strategies that ignore the directional, hierarchical causal interactions by which narrative observations precipitate diagnoses and propagate risk across admissions. In this paper, we propose **THCM-CAL**, a Temporal-Hierarchical Causal Model with Conformal Calibration. Our framework constructs a multimodal causal graph where nodes represent clinical entities from two modalities: textual propositions extracted from notes and ICD codes mapped to textual descriptions. Through hierarchical causal discovery, **THCM-CAL** infers three clinically grounded interactions: intra-slice same-modality sequencing, intra-slice cross-modality triggers, and inter-slice risk propagation. To enhance prediction reliability, we extend conformal prediction to multi-label ICD coding, calibrating per-code confidence intervals under complex co-occurrences. Experimental results on MIMIC-III and MIMIC-IV demonstrate the superiority of **THCM-CAL**.