This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
FangFang
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Large Language Models (LLMs) excel in various domains but pose inherent privacy risks. Existing methods to evaluate privacy leakage in LLMs often use memorized prefixes or simple instructions to extract data, both of which well-alignment models can easily block. Meanwhile, Jailbreak attacks bypass LLM safety mechanisms to generate harmful content, but their role in privacy scenarios remains underexplored. In this paper, we examine the effectiveness of jailbreak attacks in extracting sensitive information, bridging privacy leakage and jailbreak attacks in LLMs. Moreover, we propose PIG, a novel framework targeting Personally Identifiable Information (PII) and addressing the limitations of current jailbreak methods. Specifically, PIG identifies PII entities and their types in privacy queries, uses in-context learning to build a privacy context, and iteratively updates it with three gradient-based strategies to elicit target PII. We evaluate PIG and existing jailbreak methods using two privacy-related datasets. Experiments on four white-box and two black-box LLMs show that PIG outperforms baseline methods and achieves state-of-the-art (SoTA) results. The results underscore significant privacy risks in LLMs, emphasizing the need for stronger safeguards.
The rapid advancement of large language models has raised significant concerns regarding their potential misuse by malicious actors. As a result, developing effective detectors to mitigate these risks has become a critical priority. However, most existing detection methods focus excessively on detection accuracy, often neglecting the societal risks posed by high false positive rates (FPRs). This paper addresses this issue by leveraging Conformal Prediction (CP), which effectively constrains the upper bound of FPRs. While directly applying CP constrains FPRs, it also leads to a significant reduction in detection performance. To overcome this trade-off, this paper proposes a Zero-Shot Machine-Generated Text Detection Framework via Multiscaled Conformal Prediction (MCP), which both enforces the FPR constraint and improves detection performance. This paper also introduces RealDet, a high-quality dataset that spans a wide range of domains, ensuring realistic calibration and enabling superior detection performance when combined with MCP. Empirical evaluations demonstrate that MCP effectively constrains FPRs, significantly enhances detection performance, and increases robustness against adversarial attacks across multiple detectors and datasets.
The rapid advancement of Large Language Models (LLMs) poses significant challenges for safety evaluation. Current static datasets struggle to identify emerging vulnerabilities due to three limitations: (1) they risk being exposed in model training data, leading to evaluation bias; (2) their limited prompt diversity fails to capture real-world application scenarios; (3) they are limited to provide human-like multi-turn interactions. To address these limitations, we propose a dynamic evaluation framework, CogSafe, for comprehensive and automated multi-turn safety assessment of LLMs. We introduce CogSafe based on cognitive theories to simulate the real chatting process. To enhance assessment diversity, we introduce scenario simulation and strategy decision to guide the dynamic generation, enabling coverage of application situations. Furthermore, we incorporate the cognitive process to simulate multi-turn dialogues that reflect the cognitive dynamics of real-world interactions. Extensive experiments demonstrate the scalability and effectiveness of our framework, which has been applied to evaluate the safety of widely used LLMs.
A text corpus centered on events is foundational to research concerning the detection, representation, reasoning, and harnessing of online events. The majority of current event-based datasets mainly target sentence-level tasks, thus to advance event-related research spanning from sentence to document level, this paper introduces DEIE, a unified large-scale document-level event information extraction dataset with over 56,000+ events and 242,000+ arguments. Three key features stand out: large-scale manual annotation (20,000 documents), comprehensive unified annotation (encompassing event trigger/argument, summary, and relation at once), and emergency events annotation (covering 19 emergency types). Notably, our experiments reveal that current event-related models struggle with DEIE, signaling a pressing need for more advanced event-related research in the future.
Recent studies have shown the effectiveness of retrieval augmentation in many generative NLP tasks. These retrieval-augmented methods allow models to explicitly acquire prior external knowledge in a non-parametric manner and regard the retrieved reference instances as cues to augment text generation. These methods use similarity-based retrieval, which is based on a simple hypothesis: the more the retrieved demonstration resembles the original input, the more likely the demonstration label resembles the input label. However, due to the complexity of event labels and sparsity of event arguments, this hypothesis does not always hold in document-level EAE. This raises an interesting question: How do we design the retrieval strategy for document-level EAE? We investigate various retrieval settings from the input and label distribution views in this paper. We further augment document-level EAE with pseudo demonstrations sampled from event semantic regions that can cover adequate alternatives in the same context and event schema. Through extensive experiments on RAMS and WikiEvents, we demonstrate the validity of our newly introduced retrieval-augmented methods and analyze why they work.
Dense retrieval is widely used for entity linking to retrieve entities from large-scale knowledge bases. Mainstream techniques are based on a dual-encoder framework, which encodes mentions and entities independently and calculates their relevances via rough interaction metrics, resulting in difficulty in explicitly modeling multiple mention-relevant parts within entities to match divergent mentions. Aiming at learning entity representations that can match divergent mentions, this paper proposes a Multi-View Enhanced Distillation (MVD) framework, which can effectively transfer knowledge of multiple fine-grained and mention-relevant parts within entities from cross-encoders to dual-encoders. Each entity is split into multiple views to avoid irrelevant information being over-squashed into the mention-relevant view. We further design cross-alignment and self-alignment mechanisms for this framework to facilitate fine-grained knowledge distillation from the teacher model to the student model. Meanwhile, we reserve a global-view that embeds the entity as a whole to prevent dispersal of uniform information. Experiments show our method achieves state-of-the-art performance on several entity linking benchmarks.
Event argument extraction is critical to various natural language processing tasks for providing structured information. Existing works usually extract the event arguments one by one, and mostly neglect to build dependency information among event argument roles, especially from the perspective of event structure. Such an approach hinders the model from learning the interactions between different roles. In this paper, we raise our research question: How to adequately model dependencies between different roles for better performance? To this end, we propose an intra-event and inter-event dependency-aware graph network, which uses the event structure as the fundamental unit to construct dependencies between roles. Specifically, we first utilize the dense intra-event graph to construct role dependencies within events, and then construct dependencies between events by retrieving similar events of the current event through the retrieval module. To further optimize dependency information and event representation, we propose a dependency interaction module and two auxiliary tasks to improve the extraction ability of the model in different scenarios. Experimental results on the ACE05, RAMS, and WikiEvents datasets show the great advantages of our proposed approach.
Transforming the large amounts of unstructured text on the Internet into structured event knowledge is a critical, yet unsolved goal of NLP, especially when addressing document-level text. Existing methods struggle in Document-level Event Extraction (DEE) due to its two intrinsic challenges: (a) Nested arguments, which means one argument is the sub-string of another one. (b) Multiple events, which indicates we should identify multiple events and assemble the arguments for them. In this paper, we propose a role-interactive multi-event head attention network (CLIO) to solve these two challenges jointly. The key idea is to map different events to multiple subspaces (i.e. multi-event head). In each event subspace, we draw the semantic representation of each role closer to its corresponding arguments, then we determine whether the current event exists. To further optimize event representation, we propose an event representation enhancing strategy to regularize pre-trained embedding space to be more isotropic. Our experiments on two widely used DEE datasets show that CLIO achieves consistent improvements over previous methods.
For sentence-level extractive summarization, there is a disproportionate ratio of selected and unselected sentences, leading to flatting the summary features when maximizing the accuracy. The imbalanced classification of summarization is inherent, which can’t be addressed by common algorithms easily. In this paper, we conceptualize the single-document extractive summarization as a rebalance problem and present a deep differential amplifier framework. Specifically, we first calculate and amplify the semantic difference between each sentence and all other sentences, and then apply the residual unit as the second item of the differential amplifier to deepen the architecture. Finally, to compensate for the imbalance, the corresponding objective loss of minority class is boosted by a weighted cross-entropy. In contrast to previous approaches, this model pays more attention to the pivotal information of one sentence, instead of all the informative context modeling by recurrent or Transformer architecture. We demonstrate experimentally on two benchmark datasets that our summarizer performs competitively against state-of-the-art methods. Our source code will be available on Github.
To alleviate label scarcity in Named Entity Recognition (NER) task, distantly supervised NER methods are widely applied to automatically label data and identify entities. Although the human effort is reduced, the generated incomplete and noisy annotations pose new challenges for learning effective neural models. In this paper, we propose a novel dictionary extension method which extracts new entities through the type expanded model. Moreover, we design a multi-granularity boundary-aware network which detects entity boundaries from both local and global perspectives. We conduct experiments on different types of datasets, the results show that our model outperforms previous state-of-the-art distantly supervised systems and even surpasses the supervised models.
Sentence-level extractive text summarization is substantially a node classification task of network mining, adhering to the informative components and concise representations. There are lots of redundant phrases between extracted sentences, but it is difficult to model them exactly by the general supervised methods. Previous sentence encoders, especially BERT, specialize in modeling the relationship between source sentences. While, they have no ability to consider the overlaps of the target selected summary, and there are inherent dependencies among target labels of sentences. In this paper, we propose HAHSum (as shorthand for Hierarchical Attentive Heterogeneous Graph for Text Summarization), which well models different levels of information, including words and sentences, and spotlights redundancy dependencies between sentences. Our approach iteratively refines the sentence representations with redundancy-aware graph and delivers the label dependencies by message passing. Experiments on large scale benchmark corpus (CNN/DM, NYT, and NEWSROOM) demonstrate that HAHSum yields ground-breaking performance and outperforms previous extractive summarizers.