This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
FanZhang
Also published as:
帆 张
Papers on this page may belong to the following people:Fan Zhang,
Fan Zhang
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Recent advancements in visual generative models have enabled high-quality image and video generation, opening diverse applications. However, evaluating these models often demands sampling hundreds or thousands of images or videos, making the process computationally expensive, especially for diffusion-based models with inherently slow sampling. Moreover, existing evaluation methods rely on rigid pipelines that overlook specific user needs and provide numerical results without clear explanations. In contrast, humans can quickly form impressions of a model’s capabilities by observing only a few samples. To mimic this, we propose the Evaluation Agent framework, which employs human-like strategies for efficient, dynamic, multi-round evaluations using only a few samples per round, while offering detailed, user-tailored analyses. It offers four key advantages: 1) efficiency, 2) promptable evaluation tailored to diverse user needs, 3) explainability beyond single numerical scores, and 4) scalability across various models and tools. Experiments show that Evaluation Agent reduces evaluation time to 10% of traditional methods while delivering comparable results. The Evaluation Agent framework is fully open-sourced to advance research in visual generative models and their efficient evaluation.
The integration of sophisticated Vision-Language Models (VLMs) in vehicular systems is revolutionizing vehicle interaction and safety, performing tasks such as Visual Question Answering (VQA). However, a critical gap persists due to the lack of a comprehensive benchmark for multimodal VQA models in vehicular scenarios. To address this, we propose IntelliCockpitBench, a benchmark that encompasses diverse automotive scenarios. It includes images from front, side, and rear cameras, various road types, weather conditions, and interior views, integrating data from both moving and stationary states. Notably, all images and queries in the benchmark are verified for high levels of authenticity, ensuring the data accurately reflects real-world conditions. A sophisticated scoring methodology combining human and model-generated assessments enhances reliability and consistency. Our contributions include a diverse and authentic dataset for automotive VQA and a robust evaluation metric aligning human and machine assessments. All code and data can be found at https://github.com/Lane315/IntelliCockpitBench.
Visual presentations are vital for effective communication. Early attempts to automate their creation using deep learning often faced issues such as poorly organized layouts, inaccurate text summarization, and a lack of image understanding, leading to mismatched visuals and text. These limitations restrict their application in formal contexts like business and scientific research. To address these challenges, we propose PreGenie, an agentic and modular framework powered by multimodal large language models (MLLMs) for generating high-quality visual presentations.PreGenie is built on the Slidev presentation framework, where slides are rendered from Markdown code. It operates in two stages: (1) Analysis and Initial Generation, which summarizes multimodal input and generates initial code, and (2) Review and Re-generation, which iteratively reviews intermediate code and rendered slides to produce final, high-quality presentations. Each stage leverages multiple MLLMs that collaborate and share information. Comprehensive experiments demonstrate that PreGenie excels in multimodal understanding, outperforming existing models in both aesthetics and content consistency, while aligning more closely with human design preferences.
Formulating information retrieval as a variant of generative modeling, specifically using autoregressive models to generate relevant identifiers for a given query, has recently attracted considerable attention. However, its application to personalized sticker retrieval remains largely unexplored and presents unique challenges: existing relevance-based generative retrieval methods typically lack personalization, leading to a mismatch between diverse user expectations and the retrieved results. To address this gap, we propose PEARL, a novel generative framework for personalized sticker retrieval, and make two key contributions: (i) To encode user-specific sticker preferences, we design a representation learning model to learn discriminative user representations. It is trained on three prediction tasks that leverage personal information and click history; and (ii) To generate stickers aligned with a user’s query intent, we propose a novel intent-aware learning objective that prioritizes stickers associated with higher-ranked intents. Empirical results from both offline evaluations and online tests demonstrate that PEARL significantly outperforms state-of-the-art methods.
When verifying a claim in real-world settings, e.g. against a large collection of candidate evidence text retrieved from the web, a model is typically expected to identify and aggregate a complete set of evidence pieces that collectively provide full support to a claim.The problem becomes particularly challenging as there might exist different sets of evidence that could be used to verify the claim from different perspectives. In this paper, we formally define and study the problem of identifying such minimal evidence groups (MEGs) for fact verification. We show that MEG identification can be reduced to a Set Cover-like problem, based on an entailment model which estimates whether a given evidence group provides full or partial support to a claim. Our proposed approach achieves 18.4% & 34.8% absolute improvements on WiCE and SciFact datasets over LLM prompting. Finally, we demonstrate the downstream benefit of MEGs in applications such as claim generation.
This study evaluates the proficiency of Large Language Models (LLMs) in accurately labeling clinical document excerpts. Our focus is on the assignment of potential or confirmed diagnoses and medical procedures to snippets of medical text sourced from unstructured clinical patient records. We explore how the performance of LLMs compare against human annotators in classifying these excerpts. Employing a few-shot, chain-of-thought prompting approach with the MIMIC-III dataset, Med-PaLM 2 showcases annotation accuracy comparable to human annotators, achieving a notable precision rate of approximately 92% relative to the gold standard labels established by human experts.
Dealing with language heterogeneity has always been one of the challenges in neural machine translation (NMT).The idea of using mixture-of-experts (MoE) naturally excels in addressing this issue by employing different experts to take responsibility for different problems.However, the parameter-inefficiency problem in MoE results in less performance improvement when boosting the number of parameters.Moreover, most of the MoE models are suffering from the training instability problem.This paper proposes MoA (Mixture-of-Adapters), a lightweight MoE-based NMT model that is trained via an elaborately designed stage-wise training strategy.With the standard Transformer as the backbone model, we introduce lightweight adapters as experts for easy expansion.To improve the parameter efficiency, we explicitly model and distill the language heterogeneity into the gating network with clustering.After freezing the gating network, we adopt the Gumbel-Max sampling as the routing scheme when training experts to balance the knowledge of generalization and specialization while preventing expert over-fitting.Empirical results show that MoA achieves stable improvements in different translation tasks by introducing much fewer extra parameters compared to other MoE baselines.Additionally, the performance evaluations on a multi-domain translation task illustrate the effectiveness of our training strategy.
Image-text matching has been a long-standing problem, which seeks to connect vision and language through semantic understanding. Due to the capability to manage large-scale raw data, unsupervised hashing-based approaches have gained prominence recently. They typically construct a semantic similarity structure using the natural distance, which subsequently guides the optimization of the hashing network. However, the similarity structure could be biased at the boundaries of semantic distributions, causing error accumulation during sequential optimization. To tackle this, we introduce a novel hashing approach termed Distribution-based Structure Mining with Consistency Learning (DEMO) for efficient image-text matching. From a statistical view, DEMO characterizes each image using multiple augmented views, which are considered as samples drawn from its intrinsic semantic distribution. Then, we employ a non-parametric distribution divergence to ensure a robust and precise similarity structure. In addition, we introduce collaborative consistency learning which not only preserves the similarity structure in the Hamming space but also encourages consistency between retrieval distribution from different directions in a self-supervised manner. Extensive experiments on several widely used datasets demonstrate that DEMO achieves superior performance compared with various state-of-the-art methods.
Clinical notes are the backbone of electronic health records, often containing vital information not observed in other structured data. Unfortunately, the unstructured nature of clinical notes can lead to critical patient-related information being lost. Algorithms that organize clinical notes into distinct sections are often proposed in order to allow medical professionals to better access information in a given note. These algorithms, however, often assume a given partition over the note, and classify section types given this information. In this paper, we propose a multi-task solution for note sectioning, where a single model identifies context changes and labels each section with its medically-relevant title. Results on in-distribution (MIMIC-III) and out-of-distribution (private held-out) datasets reveal that our approach successfully identifies note sections across different hospital systems.
By learning the human post-edits, the automatic post-editing (APE) models are often used to modify the output of the machine translation (MT) system to make it as close as possible to human translation. We introduce the system used in our submission of WMT’22 Automatic Post-Editing (APE) English-Marathi (En-Mr) shared task. In this task, we first train the MT system of En-Mr to generate additional machine-translation sentences. Then we use the additional triple to bulid our APE model and use APE dataset to further fine-tuning. Inspired by the mixture of experts (MoE), we use GMM algorithm to roughly divide the text of APE dataset into three categories. After that, the experts are added to the APE model and different domain data are sent to different experts. Finally, we ensemble the models to get better performance. Our APE system significantly improves the translations of provided MT results by -2.848 and +3.74 on the development dataset in terms of TER and BLEU, respectively. Finally, the TER and BLEU scores are improved by -1.22 and +2.41 respectively on the blind test set.
In the recent advances of natural language processing, the scale of the state-of-the-art models and datasets is usually extensive, which challenges the application of sample-based explanation methods in many aspects, such as explanation interpretability, efficiency, and faithfulness. In this work, for the first time, we can improve the interpretability of explanations by allowing arbitrary text sequences as the explanation unit. On top of this, we implement a hessian-free method with a model faithfulness guarantee. Finally, to compare our method with the others, we propose a semantic-based evaluation metric that can better align with humans’ judgment of explanations than the widely adopted diagnostic or re-training measures. The empirical results on multiple real data sets demonstrate the proposed method’s superior performance to popular explanation techniques such as Influence Function or TracIn on semantic evaluation.
Despite significant progress in neural abstractive summarization, recent studies have shown that the current models are prone to generating summaries that are unfaithful to the original context. To address the issue, we study contrast candidate generation and selection as a model-agnostic post-processing technique to correct the extrinsic hallucinations (i.e. information not present in the source text) in unfaithful summaries. We learn a discriminative correction model by generating alternative candidate summaries where named entities and quantities in the generated summary are replaced with ones with compatible semantic types from the source document. This model is then used to select the best candidate as the final output summary. Our experiments and analysis across a number of neural summarization systems show that our proposed method is effective in identifying and correcting extrinsic hallucinations. We analyze the typical hallucination phenomenon by different types of neural summarization systems, in hope to provide insights for future work on the direction.
This paper presents ArgRewrite, a corpus of between-draft revisions of argumentative essays. Drafts are manually aligned at the sentence level, and the writer’s purpose for each revision is annotated with categories analogous to those used in argument mining and discourse analysis. The corpus should enable advanced research in writing comparison and revision analysis, as demonstrated via our own studies of student revision behavior and of automatic revision purpose prediction.
Penn Discourse Treebank (PDTB)-style annotation focuses on labeling local discourse relations between text spans and typically ignores larger discourse contexts. In this paper we propose two approaches to infer discourse relations in a paragraph-level context from annotated PDTB labels. We investigate the utility of inferring such discourse information using the task of revision classification. Experimental results demonstrate that the inferred information can significantly improve classification performance compared to baselines, not only when PDTB annotation comes from humans but also from automatic parsers.