This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
FanWu
Also published as:
凡 吴,
钒 吴
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
The dream to create AI assistants as capable and versatile as the fictional J.A.R.V.I.S from Iron Man has long captivated imaginations. With the evolution of multi-modal large language models ((M)LLMs), this dream is closer to reality, as (M)LLM-based Agents using computers, mobile phones and web browsers by operating within the environments and interfaces (e.g., Graphical User Interface (GUI) and Command Line Interface (CLI)) provided by operating systems (OS) to automate tasks have significantly advanced. This paper presents a comprehensive survey on these advanced agents, designated as OS Agents. We begin by elucidating the fundamentals of OS Agents, exploring their key components and capabilities. We then examine methodologies for constructing OS Agents, focusing on domain-specific foundation models and agent frameworks. A detailed review of evaluation metrics and benchmarks highlights how OS Agents are assessed across diverse platforms and tasks. Finally, we discuss current challenges and identify promising directions for future research. An open-source GitHub repository is maintained as a dynamic resource to foster further innovation in this field.
Extensive LLM applications demand efficient structured generations, particularly for LR(1) grammars, to produce outputs in specified formats (e.g., JSON). Existing methods primarily parse LR(1) grammars into a pushdown automaton (PDA), leading to runtime execution overhead for context-dependent token processing, especially inefficient under large inference batches.To address these issues, we propose Pre3 that exploits deterministic pushdown automata (DPDA) to optimize the constrained LLM decoding efficiency.First, by **pre**computing **pre**fix-conditioned edges during the **pre**processing, Pre3 enables ahead-of-time edge analysis and thus makes parallel transition processing possible.Futher, leveraging the prefix-conditioned edges, Pre3 introduces a novel approach that transforms LR(1) transition graphs into DPDA, eliminating the need for runtime path exploration and achieving edge transitions with minimal overhead.Pre3 can be seamlessly integrated into standard LLM inference frameworks, improving time per output token (TPOT) by up to 40% and throughput by up to 36% in our experiments. Our code is available at https://github.com/ModelTC/lightllm.
This paper introduces MadaKV, a modality-adaptive key-value (KV) cache eviction strategy designed to enhance the efficiency of multimodal large language models (MLLMs) in long-context inference. In multimodal scenarios, attention heads exhibit varying preferences for different modalities, resulting in significant disparities in modality importance across attention heads. Traditional KV cache eviction methods, which are tailored for unimodal settings, fail to capture modality-specific information, thereby yielding suboptimal performance. MadaKV addresses these challenges through two key components: modality preference adaptation and hierarchical compression compensation. By dynamically sensing modality information within attention heads and adaptively retaining critical tokens, MadaKV achieves substantial reductions in KV cache memory footprint and model inference decoding latency (1.3 to 1.5 times improvement) while maintaining high accuracy across various multimodal long-context tasks. Extensive experiments on representative MLLMs and the MileBench benchmark demonstrate the effectiveness of MadaKV compared to existing KV cache eviction methods.
Adapting pretrained models to downstream tasks is important in practical applications. Existing frameworks adapt from an initial pretrained model to each downstream task directly, but ignore the sequential nature of the downstream tasks and their feedback effect on the pretrained model. In this work, we propose a new framework, called BiKT, to enable bidirectional knowledge transfer between pretrained models and downstream tasks in rounds. We model each downstream task in the current round as a target task for adaptation and treat all the tasks in the previous rounds as source tasks for feedback. We design a feedback algorithm by multi-task learning over the labeled data of the source tasks, where task-specific prompts are plugged into the backbone network for decoupling task-exclusive knowledge from task-shared knowledge. We further utilize the good initiation of the new backbone network updated in the feedback phase and the trained prompts of the source tasks for adaptation. Evaluation over 9 GLUE datasets, 6 SuperGLUE datasets, and 8 other datasets using models with different pretraining levels and different parameter scales shows remarkable improvement in full-shot and few-shot adaptation settings.