This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
FanGao
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Existing large language model (LLM) evaluation benchmarks primarily focus on English, while current multilingual tasks lack parallel questions that specifically assess cross-lingual reasoning abilities. This dual limitation makes it challenging to assess LLMs’ performance in the multilingual setting comprehensively. To fill this gap, we introduce MMLU-ProX, a comprehensive benchmark covering 29 languages, built on an English benchmark. Each language version consists of 11,829 identical questions, enabling direct cross-lingual comparisons. Additionally, to meet efficient evaluation needs, we provide a lite version containing 658 questions per language. To ensure the high quality of MMLU-ProX, we employ a rigorous development process that involves multiple powerful LLMs for translation, followed by expert review to ensure accurate expression, consistent terminology, and cultural relevance. Building on this, we systematically evaluate 36 state-of-the-art LLMs, including reasoning-enhanced and multilingual-optimized LLMs. The results reveal significant disparities in the multilingual capabilities of LLMs: While they perform well in high-resource languages, their performance declines markedly in low-resource languages, particularly for African languages. Through MMLU-ProX, we aim to advance the development of more inclusive AI systems and promote equitable access to technology across global contexts.
Multi-hop question answering (QA) remains challenging, as solutions must reliably integrate and reconcile evidence from multiple sources without succumbing to error propagation. While large language models (LLMs) have achieved substantial improvements via chain-of-thought (CoT) prompting and retrieval-augmented generation, these methods typically adopt a forward-only workflow—early mistakes persist throughout inference, and contradictions discovered later cannot systematically trigger re-evaluation. To address this limitation, we present ReAgent, a reversible multi-agent reasoning framework. Specifically, ReAgent enables agents to backtrack to earlier valid states when conflicts arise, thereby isolating and rectifying flawed assumptions before they undermine subsequent reasoning. Our approach combines explicit local and global rollback protocols with modular role specialization, resulting in a flexible and error-tolerant pipeline. Empirical evaluation on three multi-hop QA benchmarks demonstrates consistent performance gains of approximately 6% over forward-only baselines, in addition to enhanced interpretability. These findings highlight the value of non-monotonic, backtracking-driven inference in complex QA scenarios and point to broader implications for multi-agent collaboration in knowledge-intensive tasks.
Large language models have made tremendous progress in recent years, but low-resource languages, like Tibetan, remain significantly underrepresented in their evaluation. Despite Tibetan being spoken by over seven million people, it has largely been neglected in the development and assessment of LLMs. To address this gap, we present a Tibetan Language Understanding Evaluation Benchmark, TLUE, which is also the first large-scale benchmark for measuring the proficiency of large language models in the Tibetan language. TLUE comprises two major components: a comprehensive multi-task understanding benchmark spanning 5 domains and 67 subdomains, and a safety benchmark encompassing 7 subdomains. Finally, we evaluate a diverse set of state-of-the-art LLMs. Experimental results demonstrate that most large language models perform below the random baseline, especially highlighting the considerable challenges they face in Tibetan language processing. TLUE provides a crucial foundation for advancing future research in Tibetan language understanding and highlights the importance of promoting greater inclusivity in the development of large language models.
Citation Sentiment Analysis (CSA) plays a crucial role in understanding academic influence and knowledge diffusion. While pre-trained language models (PLMs) and large language models (LLMs) showed remarkable success in general sentiment analysis, they encounter specialized challenges in CSA due to the less significant and implicit sentiment expressions in academic writing, as well as complex sentiment transitions. % importance & limitations In order to address the challenges, We propose TDCSA, a Top-Down framework that leverages LLMs’ semantic understanding capabilities to enhance PLM-based CSA, which transforms the traditional bottom-up feature engineering paradigm into a top-down architecture. % what we do Our framework consists of three key components: (1) a Dual LLM Feature Generation module for robust quadruple extraction, (2) a Multi-view Feature Representation mechanism for neutral citation processing, and (3) a Quad Feature Enhanced PLM. % how we do Experiments demonstrate that TDCSA significantly outperforms existing methods, achieving state-of-the-art performance while maintaining robustness to quadruple quality variations.
The absence of explicit communication channels between automated vehicles (AVs) and other road users requires the use of external Human-Machine Interfaces (eHMIs) to convey messages effectively in uncertain scenarios. Currently, most eHMI studies employ predefined text messages and manually designed actions to perform these messages, which limits the real-world deployment of eHMIs, where adaptability in dynamic scenarios is essential. Given the generalizability and versatility of large language models (LLMs), they could potentially serve as automated action designers for the message-action design task. To validate this idea, we make three contributions: (1) We propose a pipeline that integrates LLMs and 3D renderers, using LLMs as action designers to generate executable actions for controlling eHMIs and rendering action clips. (2) We collect a user-rated Action-Design Scoring dataset comprising a total of 320 action sequences for eight intended messages and four representative eHMI modalities. The dataset validates that LLMs can translate intended messages into actions close to a human level, particularly for reasoning-enabled LLMs. (3) We introduce two automated raters, Action Reference Score (ARS) and Vision-Language Models (VLMs), to benchmark 18 LLMs, finding that the VLM aligns with human preferences yet varies across eHMI modalities. The source code, prompts, Blender scenarios, and rendered clips are available at https://github.com/ApisXia/AutoActionDesign.
Educational materials such as survey articles in specialized fields like computer science traditionally require tremendous expert inputs and are therefore expensive to create and update. Recently, Large Language Models (LLMs) have achieved significant success across various general tasks. However, their effectiveness and limitations in the education domain are yet to be fully explored. In this work, we examine the proficiency of LLMs in generating succinct survey articles specific to the niche field of NLP in computer science, focusing on a curated list of 99 topics. Automated benchmarks reveal that GPT-4 surpasses its predecessors, inluding GPT-3.5, PaLM2, and LLaMa2 by margins ranging from 2% to 20% in comparison to the established ground truth. We compare both human and GPT-based evaluation scores and provide in-depth analysis. While our findings suggest that GPT-created surveys are more contemporary and accessible than human-authored ones, certain limitations were observed. Notably, GPT-4, despite often delivering outstanding content, occasionally exhibited lapses like missing details or factual errors. At last, we compared the rating behavior between humans and GPT-4 and found systematic bias in using GPT evaluation.