Fadi Amroush


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Al-Jawaab at Qur’an QA 2023 Shared Task: Exploring Embeddings and GPT Models for Passage Retrieval and Reading Comprehension
Abdulrezzak Zekiye | Fadi Amroush
Proceedings of ArabicNLP 2023

This paper introduces a comprehensive system designed to address two natural language processing tasks: Passage Retrieval (Task A) and Reading Comprehension (Task B), applied to datasets related to the Holy Qur’an. Task A was treated as a measurement of a textual similarity problem where the system leverages OpenAI’s “text-embedding-ada-002” embedding model to transform textual content into numerical representations, with cosine similarity serving as the proximity metric. Task B focuses on the extraction of answers from Qur’anic passages, employing the Generative Pre-trained Transformer-4 (GPT-4) language model. In Task A, the system is evaluated using the Mean Average Precision (MAP) metric, achieving MAP scores of 0.109438 and 0.06426543057 on the development and test datasets with an optimal similarity threshold set at 0.85. Task B evaluation employs partial Average Precision (pAP), where our system surpasses a baseline whole-passage retriever with pAP scores of 0.470 and 0.5393130538 on the development and test datasets, respectively.