Fabrice Dugas


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2016

pdf bib
DeepNNNER: Applying BLSTM-CNNs and Extended Lexicons to Named Entity Recognition in Tweets
Fabrice Dugas | Eric Nichols
Proceedings of the 2nd Workshop on Noisy User-generated Text (WNUT)

In this paper, we describe the DeepNNNER entry to The 2nd Workshop on Noisy User-generated Text (WNUT) Shared Task #2: Named Entity Recognition in Twitter. Our shared task submission adopts the bidirectional LSTM-CNN model of Chiu and Nichols (2016), as it has been shown to perform well on both newswire and Web texts. It uses word embeddings trained on large-scale Web text collections together with text normalization to cope with the diversity in Web texts, and lexicons for target named entity classes constructed from publicly-available sources. Extended evaluation comparing the effectiveness of various word embeddings, text normalization, and lexicon settings shows that our system achieves a maximum F1-score of 47.24, performance surpassing that of the shared task’s second-ranked system.