This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
FabianSchmidt
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Common factors and microcounseling skills are critical to the effectiveness of psychotherapy. Understanding and measuring these elements provides valuable insights into therapeutic processes and outcomes. However, automatic identification of these change principles from textual data remains challenging due to the nuanced and context-dependent nature of therapeutic dialogue. This paper introduces CFiCS, a hierarchical classification framework integrating graph machine learning with pre-trained contextual embeddings. We represent common factors, intervention concepts, and microcounseling skills as a heterogeneous graph, where textual information from ClinicalBERT enriches each node. This structure captures both the hierarchical relationships (e.g., skill-level nodes linking to broad factors) and the semantic properties of therapeutic concepts. By leveraging graph neural networks, CFiCS learns inductive node embeddings that generalize to unseen text samples lacking explicit connections. Our results demonstrate that integrating ClinicalBERT node features and graph structure significantly improves classification performance, especially in fine-grained skill prediction. CFiCS achieves substantial gains in both micro and macro F1 scores across all tasks compared to baselines, including random forests, BERT-based multi-task models, and graph-based methods.
Compared to standard language model (LM) pretraining (i.e., from scratch), Knowledge Distillation (KD) entails an additional forward pass through a teacher model that is typically substantially larger than the target student model. As such, KD in LM pretraining materially slows down throughput of pretraining instances vis-a-vis pretraining from scratch. Scaling laws of LM pretraining suggest that smaller models can close the gap to larger counterparts if trained on more data (i.e., processing more tokens)—and under a fixed computation budget, smaller models are able to process more data than larger models. We thus hypothesize that KD might, in fact, be suboptimal to pretraining from scratch for obtaining smaller LMs, when appropriately accounting for the compute budget. To test this, we compare pretraining from scratch against several KD strategies for masked language modeling (MLM) in a fair experimental setup, with respect to amount of computation as well as pretraining data. Downstream results on GLUE, however, do not confirm our hypothesis: while pretraining from scratch performs comparably to ordinary KD under a fixed computation budget, more sophisticated KD strategies, namely TinyBERT and MiniLM, outperform it by a notable margin. We further find that KD yields larger gains over pretraining from scratch when the data can be repeated under the fixed computation budget.
The paper presents the JSI and WüNLP systems submitted to the DIALECT-COPA shared task on causal commonsense reasoning in dialectal texts. Jointly, we compare LLM-based zero-shot and few-shot in-context inference (JSI team), and task-specific few-shot fine-tuning, in English and respective standard language, with zero-shot cross-lingual transfer (ZS-XLT) to the test dialects (WüNLP team). Given the very strong zero-shot and especially few-shot in-context learning (ICL) performance, we further investigate whether task semantics, or language/dialect semantics explain the strong performance, showing that a significant part of the improvement indeed stems from learning the language or dialect semantics from the in-context examples, with only a minor contribution from understanding the nature of the task. The higher importance of the dialect semantics to the task semantics is further shown by the finding that the in-context learning with only a few dialectal instances achieves comparable results to the supervised fine-tuning approach on hundreds of instances in standard language.