This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
EugeneYang
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Legal professionals need to write analyses that rely on citations to relevant precedents, i.e., previous case decisions. Intelligence systems assisting legal professionals in writing such documents provide great benefits but are challenging to design. Such systems need to help locate, summarize, and reason over salient precedents in order to be useful. To enable systems for such tasks, we work with legal professionals to create a colossal dataset. supporting two important backbone tasks: information retrieval (IR) and retrieval-augmented generation (RAG). This dataset **CLERC** (Case Law Evaluation and Retrieval Corpus), is constructed for training and evaluating models on their ability to (1) find corresponding citations for a given piece of legal analysis and to (2) compile the text of these citations (as well as previous context) into a cogent analysis that supports a reasoning goal. We benchmark state-of-the-art models on CLERC, showing that current approaches still struggle: GPT-4o generates analyses with the highest ROUGE F-scores but hallucinates the most, while zero-shot IR models only achieve 48.3% recall@1000.
Despite recent advancements in neural retrieval, representing text fragments or phrases with proper contextualized embeddings is still challenging. Particularly in video retrieval, where documents are text extracted through OCR from the frames or ASR from audio tracks, the textual content is rarely complete sentences but only a bag of phrases. In this work, we propose FORTIFY, a generative model fine-tuning approach for noisy document rewriting and summarization, to improve the downstream retrieval effectiveness. By experimenting on MultiVENT 2.0, an informational video retrieval benchmark, we show Llama fine-tuned with FORTIFY provides an effective document expansion, leading to a 30% improvement over prompting an out-of-box Llama model on nDCG@10. Zero-shot transferring the model tailored for MultiVENT 2.0 to two out-of-distribution datasets still demonstrates competitive retrieval effectiveness to other document preprocessing alternatives.
Despite the recent successes of transformer-based models in terms of effectiveness on a variety of tasks, their decisions often remain opaque to humans. Explanations are particularly important for tasks like offensive language or toxicity detection on social media because a manual appeal process is often in place to dispute automatically flagged content. In this work, we propose a technique to improve the interpretability of these models, based on a simple and powerful assumption: a post is at least as toxic as its most toxic span. We incorporate this assumption into transformer models by scoring a post based on the maximum toxicity of its spans and augmenting the training process to identify correct spans. We find this approach effective and can produce explanations that exceed the quality of those provided by Logistic Regression analysis (often regarded as a highly-interpretable model), according to a human study.
Offensive language detection is an important and challenging task in natural language processing. We present our submissions to the OffensEval 2020 shared task, which includes three English sub-tasks: identifying the presence of offensive language (Sub-task A), identifying the presence of target in offensive language (Sub-task B), and identifying the categories of the target (Sub-task C). Our experiments explore using a domain-tuned contextualized language model (namely, BERT) for this task. We also experiment with different components and configurations (e.g., a multi-view SVM) stacked upon BERT models for specific sub-tasks. Our submissions achieve F1 scores of 91.7% in Sub-task A, 66.5% in Sub-task B, and 63.2% in Sub-task C. We perform an ablation study which reveals that domain tuning considerably improves the classification performance. Furthermore, error analysis shows common misclassification errors made by our model and outlines research directions for future.