Eugene Laksana


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2017

pdf bib
Affect-LM: A Neural Language Model for Customizable Affective Text Generation
Sayan Ghosh | Mathieu Chollet | Eugene Laksana | Louis-Philippe Morency | Stefan Scherer
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Human verbal communication includes affective messages which are conveyed through use of emotionally colored words. There has been a lot of research effort in this direction but the problem of integrating state-of-the-art neural language models with affective information remains an area ripe for exploration. In this paper, we propose an extension to an LSTM (Long Short-Term Memory) language model for generation of conversational text, conditioned on affect categories. Our proposed model, Affect-LM enables us to customize the degree of emotional content in generated sentences through an additional design parameter. Perception studies conducted using Amazon Mechanical Turk show that Affect-LM can generate naturally looking emotional sentences without sacrificing grammatical correctness. Affect-LM also learns affect-discriminative word representations, and perplexity experiments show that additional affective information in conversational text can improve language model prediction.