Eugene Borisov


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Team NTR @ AutoMin 2023: Dolly LLM Improves Minuting Performance, Semantic Segmentation Doesn’t
Eugene Borisov | Nikolay Mikhaylovskiy
Proceedings of the 16th International Natural Language Generation Conference: Generation Challenges

This paper documents the approach of Team NTR for the Second Shared Task on Automatic Minuting (AutoMin) at INLG 2023. The goal of this work is to develop a module for automatic generation of meeting minutes based on a meeting transcript text produced by an Automated Speech Recognition (ASR) system (Task A). We consider minuting as a supervised machine learning task on pairs of texts: the transcript of the meeting and its minutes. We use a two-staged minuting pipeline that consists of segmentation and summarization. We experiment with semantic segmentation and multi-language approaches and Large Language Model Dolly, and achieve Rouge1-F of 0.2455 and BERT-Score of 0.8063 on the English part of ELITR test set and Rouge1-F of 0.2430 and BERT-Score of 0.8332 on the EuroParl dev set with the submitted Naive Segmentation + Dolly7b pipeline.