This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
ÉtienneSimon
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Systematic generalization remains challenging for current language models, which are known to be both sensitive to semantically similar permutations of the input and to struggle with known concepts presented in novel contexts. Although benchmarks exist for assessing compositional behavior, it is unclear how to measure the difficulty of a systematic generalization problem. In this work, we show how one aspect of systematic generalization can be described by the entropy of the distribution of component parts in the training data. We formalize a framework for measuring entropy in a sequence-to-sequence task and find that the performance of popular model architectures scales with the entropy. Our work connects systematic generalization to information efficiency, and our results indicate that success at high entropy can be achieved even without built-in priors, and that success at low entropy can serve as a target for assessing progress towards robust systematic generalization.
There is a large and growing body of literature on datasets created to facilitate the study of socio-political events of conflict and unrest. However, the datasets, and the approaches taken to create them, vary a lot depending on the type of research they are intended to support. For example, while scholars from natural language processing (NLP) tend to focus on annotating specific spans of text indicating various components of an event, scholars from the disciplines of political science and conflict studies tend to focus on creating databases that code an abstract but structured representation of the event, less tied to a specific source text.The survey presented in this paper aims to map out the current landscape of available event datasets within the domain of social and political conflict and unrest – both from the NLP and political science communities – offering a unified view of the work done across different disciplines.
Grounded language models use external sources of information, such as knowledge graphs, to meet some of the general challenges associated with pre-training. By extending previous work on compositional generalization in semantic parsing, we allow for a controlled evaluation of the degree to which these models learn and generalize from patterns in knowledge graphs. We develop a procedure for generating natural language questions paired with knowledge graphs that targets different aspects of compositionality and further avoids grounding the language models in information already encoded implicitly in their weights. We evaluate existing methods for combining language models with knowledge graphs and find them to struggle with generalization to sequences of unseen lengths and to novel combinations of seen base components. While our experimental results provide some insight into the expressive power of these models, we hope our work and released datasets motivate future research on how to better combine language models with structured knowledge representations.
We propose our solution to the multimodal semantic role labeling task from the CONSTRAINT’22 workshop. The task aims at classifying entities in memes into classes such as “hero” and “villain”. We use several pre-trained multi-modal models to jointly encode the text and image of the memes, and implement three systems to classify the role of the entities. We propose dynamic sampling strategies to tackle the issue of class imbalance. Finally, we perform qualitative analysis on the representations of the entities.
Unsupervised relation extraction aims at extracting relations between entities in text. Previous unsupervised approaches are either generative or discriminative. In a supervised setting, discriminative approaches, such as deep neural network classifiers, have demonstrated substantial improvement. However, these models are hard to train without supervision, and the currently proposed solutions are unstable. To overcome this limitation, we introduce a skewness loss which encourages the classifier to predict a relation with confidence given a sentence, and a distribution distance loss enforcing that all relations are predicted in average. These losses improve the performance of discriminative based models, and enable us to train deep neural networks satisfactorily, surpassing current state of the art on three different datasets.