This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
EstherGoldbraich
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
AI agents and business automation tools interacting with external web services require standardized, machine-readable information about their APIs in the form of API specifications. However, the information about APIs available online is often presented as unstructured, free-form HTML documentation, requiring external users to spend significant time manually converting it into a structured format. To address this, we introduce , a novel framework that transforms long and diverse API documentation pages into consistent, machine-readable API specifications. This is achieved through a carefully crafted pipeline that integrates large language models and rule-based algorithms which are guided by domain knowledge of the structure of documentation webpages. Our experiments demonstrate that generalizes well across hundreds of APIs, and produces valid OpenAPI specifications that encapsulate most of the information from the original documentation. has been successfully implemented in an enterprise environment, saving thousands of hours of manual effort and making hundreds of complex enterprise APIs accessible as tools for LLMs.
In the deployment of real-world text classification models, label scarcity is a common problem and as the number of classes increases, this problem becomes even more complex. An approach to addressing this problem is by applying text augmentation methods. One of the more prominent methods involves using the text-generation capabilities of language models. In this paper, we propose Text AUgmentation by Dataset Reconstruction (TAU-DR), a novel method of data augmentation for text classification. We conduct experiments on several multi-class datasets, showing that our approach improves the current state-of-the-art techniques for data augmentation.
As large language models become more prevalent, their possible harmful or inappropriate responses are a cause for concern. This paper introduces a unique dataset containing adversarial examples in the form of questions, we call AttaQ, designed to provoke such harmful or inappropriate responses. We assess the efficacy of our dataset by analyzing the vulnerabilities of various models when subjected to it. Additionally, we introduce a novel automatic approach for identifying and naming vulnerable semantic regions — input semantic areas for which the model is likely to produce harmful outputs. This is achieved through the application of specialized clustering techniques that consider both the semantic similarity of the input attacks and the harmfulness of the model’s responses.Automatically identifying vulnerable semantic regions enhances the evaluation of model weaknesses, facilitating targeted improvements to its safety mechanisms and overall reliability.
Data balancing is a known technique for improving the performance of classification tasks. In this work we define a novel balancing-viageneration framework termed BalaGen. BalaGen consists of a flexible balancing policy coupled with a text generation mechanism. Combined, these two techniques can be used to augment a dataset for more balanced distribution. We evaluate BalaGen on three publicly available semantic utterance classification (SUC) datasets. One of these is a new COVID-19 Q&A dataset published here for the first time. Our work demonstrates that optimal balancing policies can significantly improve classifier performance, while augmenting just part of the classes and under-sampling others. Furthermore, capitalizing on the advantages of balancing, we show its usefulness in all relevant BalaGen framework components. We validate the superiority of BalaGen on ten semantic utterance datasets taken from real-life goaloriented dialogue systems. Based on our results we encourage using data balancing prior to training for text classification tasks.