This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
EstelleMaudet
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Dans les moteurs de recherche sur Internet, l’une des tâches les plus importantes vise à identifier l’intention de l’utilisateur. Cet article présente notre étude pour proposer un nouveau système de détection d’intention pour le moteur de recherche sur Internet Qwant. Des logs de clic au système de détection d’intention, l’ensemble du processus est expliqué, y compris les contraintes industrielles qui ont dû être prises en compte. Une analyse manuelle des données groupées a d’abord été appliquée sur les journaux afin de mieux comprendre les objectifs de l’utilisateur et de choisir les catégories d’intention pertinentes. Lorsque la recherche satisfait aux contraintes industrielles, il faut faire des choix architecturaux et faire des concessions. Cet article explique les contraintes et les résultats obtenus pour ce nouveau système en ligne.
Dans ce papier, nous présentons la participation de Qwant Research aux tâches 2 et 3 de l’édition 2019 du défi fouille de textes (DEFT) portant sur l’analyse de documents cliniques rédigés en français. La tâche 2 est une tâche de similarité sémantique qui demande d’apparier cas cliniques et discussions médicales. Pour résoudre cette tâche, nous proposons une approche reposant sur des modèles de langue et évaluons l’impact de différents pré-traitements et de différentes techniques d’appariement sur les résultats. Pour la tâche 3, nous avons développé un système d’extraction d’information qui produit des résultats encourageants en termes de précision. Nous avons expérimenté deux approches différentes, l’une se fondant exclusivement sur l’utilisation de réseaux de neurones pour traiter la tâche, l’autre reposant sur l’exploitation des informations linguistiques issues d’une analyse syntaxique.