Eshrag Ali Refaee


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
AraBEM at WANLP 2022 Shared Task: Propaganda Detection in Arabic Tweets
Eshrag Ali Refaee | Basem Ahmed | Motaz Saad
Proceedings of the Seventh Arabic Natural Language Processing Workshop (WANLP)

Propaganda is information or ideas that an organized group or government spreads to influence peopleś opinions, especially by not giving all the facts or secretly emphasizing only one way of looking at the points. The ability to automatically detect propaganda-related linguistic signs is a challenging task that researchers in the NLP community have recently started to address. This paper presents the participation of our team AraBEM in the propaganda detection shared task on Arabic tweets. Our system utilized a pre-trained BERT model to perform multi-class binary classification. It attained the best score at 0.602 micro-f1, ranking third on subtask-1, which identifies the propaganda techniques as a multilabel classification problem with a baseline of 0.079.