This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
EsamGhaleb
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
There is an increasing trend towards evaluating NLP models with LLMs instead of human judgments, raising questions about the validity of these evaluations, as well as their reproducibility in the case of proprietary models. We provide JUDGE-BENCH, an extensible collection of 20 NLP datasets with human annotations covering a broad range of evaluated properties and types of data, and comprehensively evaluate 11 current LLMs, covering both open-weight and proprietary models, for their ability to replicate the annotations. Our evaluations show substantial variance across models and datasets. Models are reliable evaluators on some tasks, but overall display substantial variability depending on the property being evaluated, the expertise level of the human judges, and whether the language is human or model-generated. We conclude that LLMs should be carefully validated against human judgments before being used as evaluators.
In face-to-face interaction, we use multiple modalities, including speech and gestures, to communicate information and resolve references to objects. However, how representational co-speech gestures refer to objects remains understudied from a computational perspective. In this work, we address this gap by introducing a multimodal reference resolution task centred on representational gestures, while simultaneously tackling the challenge of learning robust gesture embeddings. We propose a self-supervised pre-training approach to gesture representation learning that grounds body movements in spoken language. Our experiments show that the learned embeddings align with expert annotations and have significant predictive power. Moreover, reference resolution accuracy further improves when (1) using multimodal gesture representations, even when speech is unavailable at inference time, and (2) leveraging dialogue history. Overall, our findings highlight the complementary roles of gesture and speech in reference resolution, offering a step towards more naturalistic models of human-machine interaction.