Erik Gelbing


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2021

pdf bib
Explaining Errors in Machine Translation with Absolute Gradient Ensembles
Melda Eksi | Erik Gelbing | Jonathan Stieber | Chi Viet Vu
Proceedings of the 2nd Workshop on Evaluation and Comparison of NLP Systems

Current research on quality estimation of machine translation focuses on the sentence-level quality of the translations. By using explainability methods, we can use these quality estimations for word-level error identification. In this work, we compare different explainability techniques and investigate gradient-based and perturbation-based methods by measuring their performance and required computational efforts. Throughout our experiments, we observed that using absolute word scores boosts the performance of gradient-based explainers significantly. Further, we combine explainability methods to ensembles to exploit the strengths of individual explainers to get better explanations. We propose the usage of absolute gradient-based methods. These work comparably well to popular perturbation-based ones while being more time-efficient.