This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
EricCastelli’
Also published as:
Eric Castelli
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Cet article présente une méthode non-supervisée pour extraire des paires de phrases parallèles à partir d’un corpus comparable. Un système de traduction automatique est utilisé pour exploiter le corpus comparable et détecter les paires de phrases parallèles. Un processus itératif est exécuté non seulement pour augmenter le nombre de paires de phrases parallèles extraites, mais aussi pour améliorer la qualité globale du système de traduction. Une comparaison avec une méthode semi-supervisée est présentée également. Les expériences montrent que la méthode non-supervisée peut être réellement appliquée dans le cas où on manque de données parallèles. Bien que les expériences préliminaires soient menées sur la traduction français-anglais, cette méthode non-supervisée est également appliquée avec succès à un couple de langues peu doté : vietnamien-français.
Cet article présente nos premiers travaux en vue de la construction d’un système de traduction probabiliste pour le couple de langue vietnamien-français. La langue vietnamienne étant considérée comme une langue peu dotée, une des difficultés réside dans la constitution des corpus parallèles, indispensable à l’apprentissage des modèles. Nous nous concentrons sur la constitution d’un grand corpus parallèle vietnamien-français. La méthode d’identification automatique des paires de documents parallèles fondée sur la date de publication, les mots spéciaux et les scores d’alignements des phrases est appliquée. Cet article présente également la construction d’un premier système de traduction automatique probabiliste vietnamienfrançais et français-vietnamien à partir de ce corpus et discute l’opportunité d’utiliser des unités lexicales ou sous-lexicales pour le vietnamien (syllabes, mots, ou leurs combinaisons). Les performances du système sont encourageantes et se comparent avantageusement à celles du système de Google.
Dans cet article, nous traitons du problème de la modélisation statistique du langage pour les langues peu dotées et sans segmentation entre les mots. Tandis que le manque de données textuelles a un impact sur la performance des modèles, les erreurs introduites par la segmentation automatique peuvent rendre ces données encore moins exploitables. Pour exploiter au mieux les données textuelles, nous proposons une méthode qui effectue des segmentations multiples sur le corpus d’apprentissage au lieu d’une segmentation unique. Cette méthode basée sur les automates d’état finis permet de retrouver les n-grammes non trouvés par la segmentation unique et de générer des nouveaux n-grammes pour l’apprentissage de modèle du langage. L’application de cette approche pour l’apprentissage des modèles de langage pour les systèmes de reconnaissance automatique de la parole en langue khmère et vietnamienne s’est montrée plus performante que la méthode par segmentation unique, à base de règles.
In this paper we present an overview on the development of a large vocabulary continuous speech recognition (LVCSR) system for Khmer, the official language of Cambodia, spoken by more than 15 million people. As an under-resourced language, develop a LVCSR system for Khmer is a challenging task. We describe our methodologies for quick language data collection and processing for language modeling and acoustic modeling. For language modeling, we investigate the use of word and sub-word as basic modeling unit in order to see the potential of sub-word units in the case of unsegmented language like Khmer. Grapheme-based acoustic modeling is used to quickly build our Khmer language acoustic model. Furthermore, the approaches and tools used for the development of our system are documented and made publicly available on the web. We hope this will contribute to accelerate the development of LVCSR system for a new language, especially for under-resource languages of developing countries where resources and expertise are limited.