Eric Austin


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
Community Topic: Topic Model Inference by Consecutive Word Community Discovery
Eric Austin | Osmar R. Zaïane | Christine Largeron
Proceedings of the 29th International Conference on Computational Linguistics

We present our novel, hyperparameter-free topic modelling algorithm, Community Topic. Our algorithm is based on mining communities from term co-occurrence networks. We empirically evaluate and compare Community Topic with Latent Dirichlet Allocation and the recently developed top2vec algorithm. We find that Community Topic runs faster than the competitors and produces topics that achieve higher coherence scores. Community Topic can discover coherent topics at various scales. The network representation used by Community Topic results in a natural relationship between topics and a topic hierarchy. This allows sub- and super-topics to be found on demand. These features make Community Topic the ideal tool for downstream applications such as applied research and conversational agents.