Emma O’neil


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Automatic Reflection Generation for Peer-to-Peer Counseling
Emma O’neil | João Sedoc | Diyi Yang | Haiyi Zhu | Lyle Ungar
Proceedings of the Third Workshop on Natural Language Generation, Evaluation, and Metrics (GEM)

Online peer counseling platforms enable conversations between millions of people seeking and offering mental health support. Among counseling skills, reflective listening, i.e., capturing and returning to the client something the client has said, is important for positive therapeutic outcomes. We introduce a reflection generation system for online mental health support conversations leveraging GPT-3, a large language model. We compare few-shot learning against fine-tuning and assess the impact of the quality of training examples as measured by fluency, reflection resemblance, and overall preference. Fine-tuned GPT-3 generates responses that human evaluators rate as comparable in reflection quality to responses used for tuning. Models based on high-quality responses generate substantially better reflections than ones tuned on actual responses from a large online counseling service–and better reflections than the actual counselor responses. These results suggest the care needed in selecting examples for tuning generative models.