This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
EminaKurtić
Also published as:
Emina Kurtic
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Automatic summarization of reader comments in on-line news is an extremely challenging task and a capability for which there is a clear need. Work to date has focussed on producing extractive summaries using well-known techniques imported from other areas of language processing. But are extractive summaries of comments what users really want? Do they support users in performing the sorts of tasks they are likely to want to perform with reader comments? In this paper we address these questions by doing three things. First, we offer a specification of one possible summary type for reader comment, based on an analysis of reader comment in terms of issues and viewpoints. Second, we define a task-based evaluation framework for reader comment summarization that allows summarization systems to be assessed in terms of how well they support users in a time-limited task of identifying issues and characterising opinion on issues in comments. Third, we describe a pilot evaluation in which we used the task-based evaluation framework to evaluate a prototype reader comment clustering and summarization system, demonstrating the viability of the evaluation framework and illustrating the sorts of insight such an evaluation affords.
In this paper we present a corpus of audio and video recordings of spontaneous, face-to-face multi-party conversation in two languages. Freely available high quality recordings of mundane, non-institutional, multi-party talk are still sparse, and this corpus aims to contribute valuable data suitable for study of multiple aspects of spoken interaction. In particular, it constitutes a unique resource for spoken Bosnian Serbo-Croatian (BSC), an under-resourced language with no spoken resources available at present. The corpus consists of just over 3 hours of free conversation in each of the target languages, BSC and British English (BE). The audio recordings have been made on separate channels using head-set microphones, as well as using a microphone array, containing 8 omni-directional microphones. The data has been segmented and transcribed using segmentation notions and transcription conventions developed from those of the conversation analysis research tradition. Furthermore, the transcriptions have been automatically aligned with the audio at the word and phone level, using the method of forced alignment. In this paper we describe the procedures behind the corpus creation and present the main features of the corpus for the study of conversation.