Elin Asklöv


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2021

pdf bib
CLULEX at SemEval-2021 Task 1: A Simple System Goes a Long Way
Greta Smolenska | Peter Kolb | Sinan Tang | Mironas Bitinis | Héctor Hernández | Elin Asklöv
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

This paper presents the system we submitted to the first Lexical Complexity Prediction (LCP) Shared Task 2021. The Shared Task provides participants with a new English dataset that includes context of the target word. We participate in the single-word complexity prediction sub-task and focus on feature engineering. Our best system is trained on linguistic features and word embeddings (Pearson’s score of 0.7942). We demonstrate, however, that a simpler feature set achieves comparable results and submit a model trained on 36 linguistic features (Pearson’s score of 0.7925).