This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
ElijahMayfield
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Most natural language processing research now recommends large Transformer-based models with fine-tuning for supervised classification tasks; older strategies like bag-of-words features and linear models have fallen out of favor. Here we investigate whether, in automated essay scoring (AES) research, deep neural models are an appropriate technological choice. We find that fine-tuning BERT produces similar performance to classical models at significant additional cost. We argue that while state-of-the-art strategies do match existing best results, they come with opportunity costs in computational resources. We conclude with a review of promising areas for research on student essays where the unique characteristics of Transformers may provide benefits over classical methods to justify the costs.
We introduce a corpus of the 2016 U.S. presidential debates and commentary, containing 4,648 argumentative propositions annotated with fine-grained proposition types. Modern machine learning pipelines for analyzing argument have difficulty distinguishing between types of propositions based on their factuality, rhetorical positioning, and speaker commitment. Inability to properly account for these facets leaves such systems inaccurate in understanding of fine-grained proposition types. In this paper, we demonstrate an approach to annotating for four complex proposition types, namely normative claims, desires, future possibility, and reported speech. We develop a hybrid machine learning and human workflow for annotation that allows for efficient and reliable annotation of complex linguistic phenomena, and demonstrate with preliminary analysis of rhetorical strategies and structure in presidential debates. This new dataset and method can support technical researchers seeking more nuanced representations of argument, as well as argumentation theorists developing new quantitative analyses.
As the demand for explainable deep learning grows in the evaluation of language technologies, the value of a principled grounding for those explanations grows as well. Here we study the state-of-the-art in explanation for neural models for NLP tasks from the viewpoint of philosophy of science. We focus on recent evaluation work that finds brittleness in explanations obtained through attention mechanisms. We harness philosophical accounts of explanation to suggest broader conclusions from these studies. From this analysis, we assert the impossibility of causal explanations from attention layers over text data. We then introduce NLP researchers to contemporary philosophy of science theories that allow robust yet non-causal reasoning in explanation, giving computer scientists a vocabulary for future research.
In group decision-making, the nuanced process of conflict and resolution that leads to consensus formation is closely tied to the quality of decisions made. Behavioral scientists rarely have rich access to process variables, though, as unstructured discussion transcripts are difficult to analyze. Here, we define ways for NLP researchers to contribute to the study of groups and teams. We introduce three tasks alongside a large new corpus of over 400,000 group debates on Wikipedia. We describe the tasks and their importance, then provide baselines showing that BERT contextualized word embeddings consistently outperform other language representations.
We critique recent work on ethics in natural language processing. Those discussions have focused on data collection, experimental design, and interventions in modeling. But we argue that we ought to first understand the frameworks of ethics that are being used to evaluate the fairness and justice of algorithmic systems. Here, we begin that discussion by outlining deontological and consequentialist ethics, and make predictions on the research agenda prioritized by each.
There is a long record of research on equity in schools. As machine learning researchers begin to study fairness and bias in earnest, language technologies in education have an unusually strong theoretical and applied foundation to build on. Here, we introduce concepts from culturally relevant pedagogy and other frameworks for teaching and learning, identifying future work on equity in NLP. We present case studies in a range of topics like intelligent tutoring systems, computer-assisted language learning, automated essay scoring, and sentiment analysis in classrooms, and provide an actionable agenda for research.