Elia Faure-Rolland


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
TableKV: KV Cache Compression for In-Context Table Processing
Giulio Corallo | Elia Faure-Rolland | Miriam Lamari | Paolo Papotti
Proceedings of the 4th Table Representation Learning Workshop

Processing large tables provided in-context to LLMs is challenging due to token limits and information overload. While Retrieval-Augmented Generation can select relevant subsets externally, this work explores Key-Value (KV) cache compression as an alternative, applied directly to the linearized table during inference. We show that the LLM’s internal attention scores over the table context guides the retention of essential KV pairs, effectively compressing the processing context while preserving crucial relational information needed for complex queries. Experiments on Spider, WikitableQA, and QTSumm datasets validate the compression approach for in-context table processing, offering a promising path for improved table representation learning in LLMs.