Elena Pitta


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Probing Vision-Language Understanding through the Visual Entailment Task: promises and pitfalls
Elena Pitta | Tom Kouwenhoven | Tessa Verhoef
Proceedings of the 2nd LUHME Workshop

This study investigates the extent to which the Visual Entailment (VE) task serves as a reliable probe of vision-language understanding in multimodal language models, using the LLaMA 3.2 11B Vision model as a test case. Beyond reporting performance metrics, we aim to interpret what these results reveal about the underlying possibilities and limitations of the VE task. We conduct a series of experiments across zero-shot, few-shot, and fine-tuning settings, exploring how factors such as prompt design, the number and order of in-context examples and access to visual information might affect VE performance. To further probe the reasoning processes of the model, we used explanation-based evaluations. Results indicate that three-shot inference outperforms the zero-shot baselines. However, additional examples introduce more noise than they provide benefits. Additionally, the order of the labels in the prompt is a critical factor that influences the predictions. In the absence of visual information, the model has a strong tendency to hallucinate and imagine content, raising questions about the model’s over-reliance on linguistic priors. Fine-tuning yields strong results, achieving an accuracy of 83.3% on the e-SNLI-VE dataset and outperforming the state-of-the-art OFA-X model. Additionally, the explanation evaluation demonstrates that the fine-tuned model provides semantically meaningful explanations similar to those of humans, with a BERTScore F1-score of 89.2%. We do, however, find comparable BERTScore results in experiments with limited vision, questioning the visual grounding of this task. Overall, our results highlight both the utility and limitations of VE as a diagnostic task for vision-language understanding and point to directions for refining multimodal evaluation methods.