Ekaterina Saveleva


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2021

pdf bib
Discourse-based Argument Segmentation and Annotation
Ekaterina Saveleva | Volha Petukhova | Marius Mosbach | Dietrich Klakow
Proceedings of the 17th Joint ACL - ISO Workshop on Interoperable Semantic Annotation

The paper presents a discourse-based approach to the analysis of argumentative texts departing from the assumption that the coherence of a text should capture argumentation structure as well and, therefore, existing discourse analysis tools can be successfully applied for argument segmentation and annotation tasks. We tested the widely used Penn Discourse Tree Bank full parser (Lin et al., 2010) and the state-of-the-art neural network NeuralEDUSeg (Wang et al., 2018) and XLNet (Yang et al., 2019) models on the two-stage discourse segmentation and discourse relation recognition. The two-stage approach outperformed the PDTB parser by broad margin, i.e. the best achieved F1 scores of 21.2 % for PDTB parser vs 66.37% for NeuralEDUSeg and XLNet models. Neural network models were fine-tuned and evaluated on the argumentative corpus showing a promising accuracy of 60.22%. The complete argument structures were reconstructed for further argumentation mining tasks. The reference Dagstuhl argumentative corpus containing 2,222 elementary discourse unit pairs annotated with the top-level and fine-grained PDTB relations will be released to the research community.

pdf bib
Graph-based Argument Quality Assessment
Ekaterina Saveleva | Volha Petukhova | Marius Mosbach | Dietrich Klakow
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)

The paper presents a novel discourse-based approach to argument quality assessment defined as a graph classification task, where the depth of reasoning (argumentation) is evident from the number and type of detected discourse units and relations between them. We successfully applied state-of-the-art discourse parsers and machine learning models to reconstruct argument graphs with the identified and classified discourse units as nodes and relations between them as edges. Then Graph Neural Networks were trained to predict the argument quality assessing its acceptability, relevance, sufficiency and overall cogency. The obtained accuracy ranges from 74.5% to 85.0% and indicates that discourse-based argument structures reflect qualitative properties of natural language arguments. The results open many interesting prospects for future research in the field of argumentation mining.