Egecan Evgin


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
MetninOzU at BioLaySumm2025: Text Summarization with Reverse Data Augmentation and Injecting Salient Sentences
Egecan Evgin | Ilknur Karadeniz | Olcay Taner Yıldız
Proceedings of the 24th Workshop on Biomedical Language Processing (Shared Tasks)

In this paper, we present our approach to the BioLaySumm 2025 Shared Task on lay summarization of biomedical research articles, which was conducted as part of the BioNLP Workshop 2025. The aim of the task is to create lay summaries from scientific articles to improve accessibility for a non-expert audience. To this end, we applied preprocessing techniques to clean and standardize the input texts, and fine-tuned Qwen2.5 and Qwen3-based language models for the summarization task. For abstract-based fine-tuning, we investigated whether we can insert salient sentences from the main article into the summary to enrich the input. We also curated a dataset of child-friendly articles with corresponding gold-standard summaries and used large language models to rewrite them into more complex scientific variants to augment our training data with more examples.