This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
EetuMäkelä
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Coding themes, frames, opinions and other attributes are widely used in the social sciences and doing that is also a base for building supervised text classifiers. Coding content needs a lot of resources, and lately this process has been utilized particularly in the training set annotation for machine learning models. Although the objectivity of coding is not always the purpose of coding, it helps in building the machine learning model, if the codings are uniformly done. Usually machine learning models are built by first defining annotation scheme, which contains definitions of categories and instructions for coding. It is known that multiple aspects affect to the annotation results, such as, the domain of annotation, number of annotators, and number of categories in annotation. In this article, we present few more problems that we show to be related with the annotation results in our case study. Those are negated presence of a category, low proportional presence of relevant content and implicit presence of a category. These problems should be resolved in all schemes on the level of scheme definition. To extract our problem categories, we focus on a media research case of extensive data on both the process as well as the results.
We approach the problem of recognition and attribution of quotes in Finnish news media. Solving this task would create possibilities for large-scale analysis of media wrt. the presence and styles of presentation of different voices and opinions. We describe the annotation of a corpus of media texts, numbering around 1500 articles, with quote attribution and coreference information. Further, we compare two methods for automatic quote recognition: a rule-based one operating on dependency trees and a machine learning one built on top of the BERT language model. We conclude that BERT provides more promising results even with little training data, achieving 95% F-score on direct quote recognition and 84% for indirect quotes. Finally, we discuss open problems and further associated tasks, especially the necessity of resolving speaker mentions to entity references.
In this paper, we describe a BERT model trained on the Eighteenth Century Collections Online (ECCO) dataset of digitized documents. The ECCO dataset poses unique modelling challenges due to the presence of Optical Character Recognition (OCR) artifacts. We establish the performance of the BERT model on a publication year prediction task against linear baseline models and human judgement, finding the BERT model to be superior to both and able to date the works, on average, with less than 7 years absolute error. We also explore how language change over time affects the model by analyzing the features the model uses for publication year predictions as given by the Integrated Gradients model explanation method.
This paper studies the use of NMT (neural machine translation) as a normalization method for an early English letter corpus. The corpus has previously been normalized so that only less frequent deviant forms are left out without normalization. This paper discusses different methods for improving the normalization of these deviant forms by using different approaches. Adding features to the training data is found to be unhelpful, but using a lexicographical resource to filter the top candidates produced by the NMT model together with lemmatization improves results.
This paper presents multiple methods for normalizing the most deviant and infrequent historical spellings in a corpus consisting of personal correspondence from the 15th to the 19th century. The methods include machine translation (neural and statistical), edit distance and rule-based FST. Different normalization methods are compared and evaluated. All of the methods have their own strengths in word normalization. This calls for finding ways of combining the results from these methods to leverage their individual strengths.