This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
EduardoSánchez
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
The purpose of this work is to share an English-Yorùbá evaluation dataset for openbook reading comprehension with open-ended questions to assess the performance of models both in a high- and a low-resource language. The dataset contains 358 questions and answers on 338 English documents and 208 Yorùbá documents. Experiments show a consistent disparity in performance between the two languages, with Yorùbá falling behind English for automatic metrics even if documents are much shorter for this language. For a small set of documents with comparable length, performance of Yorùbá drops by 2.5 times and this comparison is validated with humanevaluation. When analyzing performance by length, we observe that Yorùbá decreases performance dramatically for documents that reach 1500 words while English performance is barely affected at that length. Our dataset opens the door to showcasing if English LLM reading comprehension capabilities extend to Yorùbá, which for the evaluated LLMs is not the case.
BOUQuET is a multi-way, multicentric and multi-register/domain dataset and benchmark, and a broader collaborative initiative. This dataset is handcrafted in 8 non-English languages (i.e. Egyptian Arabic and Modern Standard Arabic, French, German, Hindi, Indonesian, Mandarin Chinese, Russian, and Spanish). Each of these source languages are representative of the most widely spoken ones and therefore they have the potential to serve as pivot languages that will enable more accurate translations. The dataset is multicentric to enforce representation of multilingual language features. In addition, the dataset goes beyond the sentence level, as it is organized in paragraphs of various lengths. Compared with related machine translation datasets, we show that BOUQuET has a broader representation of domains while simplifying the translation task for non-experts. Therefore, BOUQuET is specially suitable for crowd-source extension for which we are launching a call aim-ing at collecting a multi-way parallel corpus covering any written language. The dataset is freely available at https://huggingface.co/datasets/facebook/bouquet.
This paper presents the Long Context and Form Output (LCFO) benchmark, a novel evaluation framework for assessing gradual summarization and summary expansion capabilities across diverse domains. LCFO consists of long input documents (5k words average length), each of which comes with three summaries of different lengths (20%, 10%, and 5% of the input text), as well as approximately 15 questions and answers (QA) related to the input content. Notably, LCFO also provides alignments between specific QA pairs and corresponding summaries in 7 domains. The primary motivation behind providing summaries of different lengths is to establish a controllable framework for generating long texts from shorter inputs, i.e. summary expansion. To establish an evaluation metric framework for summarization and summary expansion, we provide human evaluation scores for human-generated outputs, as well as results from various state-of-the-art large language models (LLMs). GPT-4o-mini achieves best human scores among automatic systems in both summarization and summary expansion tasks (≈ +10% and +20%, respectively). It even surpasses human output quality in the case of short summaries (≈ +7%). Overall automatic metrics achieve low correlations with human evaluation scores (≈ 0.4) but moderate correlation on specific evaluation aspects such as fluency and attribution (≈ 0.6).
Text toxicity detection systems exhibit significant biases, producing disproportionate rates of false positives on samples mentioning demographic groups. But what about toxicity detection in speech? To investigate the extent to which text-based biases are mitigated by speech-based systems, we produce a set of high-quality group annotations for the multilingual MuTOX dataset, and then leverage these annotations to systematically compare speech- and text-based toxicity classifiers. Our findings indicate that access to speech data during inference supports reduced bias against group mentions, particularly for ambiguous and disagreement-inducing samples. Our results also suggest that improving classifiers, rather than transcription pipelines, is more helpful for reducing group bias. We publicly release our annotations and provide recommendations for future toxicity dataset construction.
Multilingual toxicity detection remains a significant challenge due to the scarcity of training data and resources for many languages. While prior work has leveraged the translate-test paradigm to support cross-lingual transfer across a range of classification tasks, the utility of translation in supporting toxicity detection at scale remains unclear.In this work, we conduct a comprehensive comparison of translation-based and language-specific/multilingual classification pipelines.We find that translation-based pipelines consistently outperform out-of-distribution classifiers in 81.3% of cases (13 of 16 languages), with translation benefits strongly correlated with both the resource level of the target language and the quality of the machine translation (MT) system.Our analysis reveals that traditional classifiers continue to outperform LLM-based judgment methods, with this advantage being particularly pronounced for low-resource languages, where translate-classify methods dominate translate-judge approaches in 6 out of 7 cases.We show that MT-specific fine-tuning on LLMs yields lower refusal rates compared to standard instruction-tuned models, but it can negatively impact toxicity detection accuracy for low-resource languages.These findings offer actionable guidance for practitioners developing scalable multilingual content moderation systems.
The WMT25 Multilingual Instruction Shared Task (MIST) introduces a benchmark to evaluate large language models (LLMs) across 30 languages. The benchmark covers five types of problems: machine translation, linguistic reasoning, open-ended generation, cross-lingual summarization, and LLM-as-a-judge.We provide automatic evaluation and collect human annotations, which highlight the limitations of automatic evaluation and allow further research into metric meta-evaluation. We run on our benchmark a diverse set of open- and closed-weight LLMs, providing a broad assessment of the multilingual capabilities of current LLMs. Results highlight substantial variation across sub-tasks and languages, revealing persistent challenges in reasoning, cross-lingual generation, and evaluation reliability. This work establishes a standardized framework for measuring future progress in multilingual LLM development.
Recent advancements in massively multilingual machine translation systems have significantly enhanced translation accuracy; however, even the best performing systems still generate hallucinations, severely impacting user trust. Detecting hallucinations in Machine Translation (MT) remains a critical challenge, particularly since existing methods excel with High-Resource Languages (HRLs) but exhibit substantial limitations when applied to Low-Resource Languages (LRLs). This paper evaluates sentence-level hallucination detection approaches using Large Language Models (LLMs) and semantic similarity within massively multilingual embeddings. Our study spans 16 language directions, covering HRLs, LRLs, with diverse scripts. We find that the choice of model is essential for performance. On average, for HRLs, Llama3-70B outperforms the previous state of the art by as much as 0.16 MCC (Matthews Correlation Coefficient). However, for LRLs we observe that Claude Sonnet outperforms other LLMs on average by 0.03 MCC. The key takeaway from our study is that LLMs can achieve performance comparable or even better than previously proposed models, despite not being explicitly trained for any machine translation task. However, their advantage is less significant for LRLs.
We describe the details of the Shared Task of the 5th ACL Workshop on Gender Bias in Natural Language Processing (GeBNLP 2024). The task uses dataset to investigate the quality of Machine Translation systems on a particular case of gender robustness. We report baseline results as well as the results of the first participants. The shared task will be permanently available in the Dynabench platform.
‘While machine translation (MT) systems have seen significant improvements,it is still common for translations to reflect societal biases, such as genderbias. Decoder-only language models (LLMs) have demonstrated potential in MT, albeitwith performance slightly lagging behind traditional encoder-decoder neural machinetranslation (NMT) systems. However, LLMs offer a unique advantage: the abilityto control the properties of the output through prompting. In this study, we leveragethis flexibility to explore Llama”s capability to produce gender-specific translations.Our results indicate that Llama can generate gender-specific translations withtranslation quality and gender bias comparable to NLLB, a state-of-the-art multilingualNMT system.’