Duy-Hung Nguyen


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
Make The Most of Prior Data: A Solution for Interactive Text Summarization with Preference Feedback
Duy-Hung Nguyen | Nguyen Viet Dung Nghiem | Bao-Sinh Nguyen | Dung Tien Tien Le | Shahab Sabahi | Minh-Tien Nguyen | Hung Le
Findings of the Association for Computational Linguistics: NAACL 2022

For summarization, human preferences is critical to tame outputs of the summarizer in favor of human interests, as ground-truth summaries are scarce and ambiguous. Practical settings require dynamic exchanges between humans and AI agents wherein feedback is provided in an online manner, a few at a time. In this paper, we introduce a new framework to train summarization models with preference feedback interactively. By properly leveraging offline data and a novel reward model, we improve the performance regarding ROUGE scores and sample-efficiency. Our experiments on three various datasets confirm the benefit of the proposed framework in active, few-shot and online settings of preference learning.