Dora LaCasse


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Code-Switching Metrics Using Intonation Units
Rebecca Pattichis | Dora LaCasse | Sonya Trawick | Rena Torres Cacoullos
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Code-switching (CS) metrics in NLP that are based on word-level units are misaligned with true bilingual CS behavior. Crucially, CS is not equally likely between any two words, but follows syntactic and prosodic rules. We adapt two metrics, multilinguality and CS probability, and apply them to transcribed bilingual speech, for the first time putting forward Intonation Units (IUs) – prosodic speech segments – as basic tokens for NLP tasks. In addition, we calculate these two metrics separately for distinct mixing types: alternating-language multi-word strings and single-word incorporations from one language into another. Results indicate that individual differences according to the two CS metrics are independent. However, there is a shared tendency among bilinguals for multi-word CS to occur across, rather than within, IU boundaries. That is, bilinguals tend to prosodically separate their two languages. This constraint is blurred when metric calculations do not distinguish multi-word and single-word items. These results call for a reconsideration of units of analysis in future development of CS datasets for NLP tasks.