This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
DongshengWang
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Due to their ability to process long and complex contexts, LLMs can offer key benefits to the Legal domain, but their adoption has been hindered by their tendency to generate unfaithful, ungrounded, or hallucinatory outputs. While Retrieval-Augmented Generation offers a promising solution by grounding generations in external knowledge, it offers no guarantee that the provided context will be effectively integrated. To address this, context-aware decoding strategies have been proposed to amplify the influence of relevant context, but they usually do not explicitly enforce faithfulness to the context. In this work, we introduce Confidence-guided Copy-based Decoding for Legal Text Generation (CoCoLex)—a decoding strategy that dynamically interpolates the model produced vocabulary distribution with a distribution derived based on copying from the context. CoCoLex encourages direct copying based on models’ confidence, ensuring greater fidelity to the source. Experimental results on five legal benchmarks demonstrate that CoCoLex outperforms existing context-aware decoding methods, particularly in long-form generation tasks.
Existing tool-learning methods usually rely on supervised fine-tuning, they often overlook fine-grained optimization of internal tool call details, leading to limitations in preference alignment and error discrimination. To overcome these challenges, we propose **T**oken-level **T**ool-use **P**reference **A**lignment Training Framework (TTPA), a training paradigm for constructing token-level tool-use preference datasets that align LLMs with fine-grained preferences using a novel error-oriented scoring mechanism. TTPA first introduces reversed dataset construction, a method for creating high-quality, multi-turn tool-use datasets by reversing the generation flow. Additionally, we propose _Preference Oriented Tool-use Dataset Construction_ to capture fine-grained preferences by modeling token-level differences during generation. To address biases in scoring, we introduce the _Error-oriented Scoring Mechanism_, which quantifies tool-call errors and can be used as a training signal. Extensive experiments on three diverse benchmark datasets demonstrate that TTPA significantly improves tool-using performance while showing strong generalization ability across models and datasets.
The field of visually rich document understanding (VRDU) aims to solve a multitude of well-researched NLP tasks in the multi-modal domain. Several datasets exist for research on specific tasks of VRDU, such as document classification (DC), key entity extraction (KEE), entity linking, visual question answering (VQA), inter alia. These datasets cover documents like invoices and receipts with sparse annotations such that they support one or two co-related tasks (e.g., entity extraction and entity linking). Unfortunately, only focusing on a single specific type of documents or task is not representative of how documents often need to be processed in the wild – where variety in style and requirements is expected. In this paper, we introduce BuDDIE: Business Document Dataset for Information Extraction, the first multi-task dataset of 1665 real-world business documents that contains rich and dense annotations for DC, KEE, and VQA. Our dataset consists of publicly available business entity documents from US state government websites. The documents are structured and vary in their style and layout across states and types (e.g., forms, certificates, reports, etc.). We provide data variety and quality metrics for BuDDIE as well as a series of baselines for each task. Our baselines cover traditional textual, multi-modal, and large language model approaches to VRDU.
Enterprise documents such as forms, receipts, reports, and other such records, often carry rich semantics at the intersection of textual and spatial modalities. The visual cues offered by their complex layouts play a crucial role in comprehending these documents effectively. In this paper, we present DocLLM, a lightweight extension to traditional large language models (LLMs) for reasoning over visual documents, taking into account both textual semantics and spatial layout. Our model differs from existing multimodal LLMs by avoiding expensive image encoders and focuses exclusively on bounding box information to incorporate the spatial layout structure. Specifically, the cross-alignment between text and spatial modalities is captured by decomposing the attention mechanism in classical transformers to a set of disentangled matrices. Furthermore, we devise a pre-training objective that learns to infill text segments. This approach allows us to address irregular layouts and heterogeneous content frequently encountered in visual documents. The pre-trained model is fine-tuned using a large-scale instruction dataset, covering four core document intelligence tasks. We demonstrate that our solution outperforms SotA LLMs on 14 out of 16 datasets across all tasks, and generalizes well to 4 out of 5 previously unseen datasets.
Collecting labeled datasets in finance is challenging due to scarcity of domain experts and higher cost of employing them. While Large Language Models (LLMs) have demonstrated remarkable performance in data annotation tasks on general domain datasets, their effectiveness on domain specific datasets remains under-explored. To address this gap, we investigate the potential of LLMs as efficient data annotators for extracting relations in financial documents. We compare the annotations produced by three LLMs (GPT-4, PaLM 2, and MPT Instruct) against expert annotators and crowdworkers. We demonstrate that the current state-of-the-art LLMs can be sufficient alternatives to non-expert crowdworkers. We analyze models using various prompts and parameter settings and find that customizing the prompts for each relation group by providing specific examples belonging to those groups is paramount. Furthermore, we introduce a reliability index (LLM-RelIndex) used to identify outputs that may require expert attention. Finally, we perform an extensive time, cost and error analysis and provide recommendations for the collection and usage of automated annotations in domain-specific settings.
We contribute the largest publicly available dataset of naturally occurring factual claims for the purpose of automatic claim verification. It is collected from 26 fact checking websites in English, paired with textual sources and rich metadata, and labelled for veracity by human expert journalists. We present an in-depth analysis of the dataset, highlighting characteristics and challenges. Further, we present results for automatic veracity prediction, both with established baselines and with a novel method for joint ranking of evidence pages and predicting veracity that outperforms all baselines. Significant performance increases are achieved by encoding evidence, and by modelling metadata. Our best-performing model achieves a Macro F1 of 49.2%, showing that this is a challenging testbed for claim veracity prediction.