Dongming Jin


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Finite State Automata Inside Transformers with Chain-of-Thought: A Mechanistic Study on State Tracking
Yifan Zhang | Wenyu Du | Dongming Jin | Jie Fu | Zhi Jin
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Chain-of-thought (CoT) significantly enhances the performance of large language models (LLMs) across a wide range of tasks, and prior research shows that CoT can theoretically increase expressiveness. However, there is limited mechanistic understanding of the algorithms that Transformer+CoT can learn. Our key contributions are: (1) We evaluate the state tracking capabilities of Transformer+CoT and its variants, confirming the effectiveness of CoT. (2) Next, we identify the circuit (a subset of model components, responsible for tracking the world state), indicating that late-layer MLP neurons play a key role. We propose two metrics, compression and distinction, and show that the neuron sets for each state achieve nearly 100% accuracy, providing evidence of an implicit finite state automaton (FSA) embedded within the model. (3) Additionally, we explore three challenging settings: skipping intermediate steps, introducing data noises, and testing length generalization. Our results demonstrate that Transformer+CoT learns robust algorithms (FSAs), highlighting its resilience in challenging scenarios. Our code is available at https://github.com/IvanChangPKU/FSA.