This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
DongkeunYoon
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
As language models (LMs) become capable of handling a wide range of tasks, their evaluation is becoming as challenging as their development. Most generation benchmarks currently assess LMs using abstract evaluation criteria-like helpfulness and harmlessness-which often lack the flexibility and granularity of human assessment. Additionally, these benchmarks tend to focus disproportionately on specific capabilities such as instruction following, leading to coverage bias. To overcome these limitations, we introduce the BiGGen Bench, a principled generation benchmark designed to thoroughly evaluate nine distinct capabilities of LMs across 77 diverse tasks. A key feature of the BiGGen Bench is its use of instance-specific evaluation criteria, closely mirroring the nuanced discernment of human evaluation. We apply this benchmark to assess 100 frontier LMs using five evaluator LMs. Our code, data, and evaluation results are all publicly available at https://github.com/prometheus-eval/prometheus-eval.
We introduce LangBridge, a zero-shot approach to adapt language models for multilingual reasoning tasks without multilingual supervision. LangBridge operates by bridging two models, each specialized in different aspects: (1) one specialized in understanding multiple languages (e.g., mT5 encoder) and (2) one specialized in reasoning (e.g., MetaMath). LangBridge connects the two models by introducing minimal trainable parameters between them. Despite utilizing only English data for training, LangBridge considerably enhances the performance of language models on low-resource languages across mathematical reasoning, code completion, logical reasoning, and commonsense reasoning. Our analysis suggests that the efficacy of LangBridge stems from the language-agnostic characteristics of multilingual representations. We publicly release our code and models.
Pretrained Language Models (LMs) memorize a vast amount of knowledge during initial pretraining, including information that may violate the privacy of personal lives and identities. Previous work addressing privacy issues for LMs has mostly focused on data preprocessing and differential privacy methods, both requiring re-training the underlying LM. We propose knowledge unlearning as an alternative method to reduce privacy risks for LMs post hoc. We show that simply performing gradient ascent on target token sequences is effective at forgetting them with little to no degradation of general language modeling performances for larger-sized LMs. We also find that sequential unlearning is better than trying to unlearn all the data at once and that unlearning is highly dependent on which kind of data (domain) is forgotten. By showing comparisons with previous methods known to mitigate privacy risks for LMs, we show that our approach can give a stronger empirical privacy guarantee in scenarios where the data vulnerable to extraction attacks are known a priori while being much more efficient and robust.
In this work, we empirically show that updating pretrained LMs (350M, 1.3B, 2.7B) with just a few steps of Gradient Ascent Post-training (GAP) on random, unlabeled text corpora enhances its zero-shot generalization capabilities across diverse NLP tasks. Specifically, we show that GAP can allow LMs to become comparable to 2-3x times larger LMs across 12 different NLP tasks. We also show that applying GAP on out-of-distribution corpora leads to the most reliable performance improvements. Our findings indicate that GAP can be a promising method for improving the generalization capability of LMs without any task-specific fine-tuning.