This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
DonghyunKim
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
The rapid evolution of large language models (LLMs) has revolutionized natural language processing (NLP) tasks such as text generation, translation, and comprehension. However, the increasing computational demands and inference costs of these models present significant challenges. This study investigates the dynamic and efficient utilization of pre-trained weights from open-sourced LLMs of varying parameter sizes to achieve an optimal balance between computational efficiency and task performance. Drawing inspiration from the dual-process theory of human cognition, we introduce StitchLLM: a dynamic model routing framework that employs a powerful bottom model to process all queries, and uses a lightweight routing mechanism to allocate computational resources appropriately. Our novel framework optimizes efficiency and maintains performance, leveraging a trainable stitching layer for seamless integration of decoder layers across different LLMs. Experimental results demonstrate that StitchLLM improves system throughput while minimizing performance degradation, offering a flexible solution for deploying LLMs in resource-constrained settings.
Workload traces are essential to understand complex computer systems’ behavior and manage processing and memory resources. Since real-world traces are hard to obtain, synthetic trace generation is a promising alternative. This paper proposes a first-of-a-kind approach that relies on training a large language model (LLM) to generate synthetic workload traces, specifically microservice call graphs. To capture complex and arbitrary hierarchical structures and implicit constraints in such traces, we propose to train LLMs to generate recursively, making call graph generation a sequence of more manageable steps. To further enforce learning constraints on the traces and generate uncommon situations, we apply additional instruction tuning steps to align our model with the desired trace features. With this method, we train TraceLLM, an LLM for microservice trace generation, and demonstrate that it produces diverse, realistic traces under varied conditions, outperforming existing approaches in both accuracy and validity. The synthetically generated traces can effectively replace real data to optimize important microservice management tasks. Additionally, TraceLLM adapts to downstream trace-related tasks, such as predicting key trace features and infilling missing data.
While advancements in Vision Language Models (VLMs) have significantly improved the alignment of visual and textual data, these models primarily focus on aligning images with short descriptive captions. This focus limits their ability to handle complex text interactions, particularly with longer texts such as lengthy captions or documents, which have not been extensively explored yet. In this paper, we introduce Meet At The Embedding (MATE), a novel approach that combines the capabilities of VLMs with Large Language Models (LLMs) to overcome this challenge without the need for additional image-long text pairs. Specifically, we replace the text encoder of the VLM with a pretrained LLM-based encoder that excels in understanding long texts. To bridge the gap between VLM and LLM, MATE incorporates a projection module that is trained in a multi-stage manner. It starts by aligning the embeddings from the VLM text encoder with those from the LLM using extensive text pairs. This module is then employed to seamlessly align image embeddings closely with LLM embeddings. We propose two new cross-modal retrieval benchmarks to assess the task of connecting images with long texts (lengthy captions / documents). Extensive experimental results demonstrate that MATE effectively connects images with long texts, uncovering diverse semantic relationships.
Generating diverse and consistent responses is the ultimate goal of a persona-based dialogue. Although many studies have been conducted, the generated responses tend to be generic and bland due to the personas’ limited descriptiveness. Therefore, it is necessary to expand the given personas for more attractive responses. However, indiscriminate expansion of personas threaten the consistency of responses and therefore reduce the interlocutor’s interest in conversation. To alleviate this issue, we propose a consistent persona expansion framework that improves not only the diversity but also the consistency of persona-based responses. To do so, we define consistency criteria to avoid possible contradictions among personas as follows: 1) Intra-Consistency and 2) Inter-Consistency. Then, we construct a silver profile dataset to deliver the ability to conform with the consistency criteria to the expansion model. Finally, we propose a persona expansion model with an encoder-decoder structure, which considers the relatedness and consistency among personas. Our experiments on the Persona-Chat dataset demonstrate the superiority of the proposed framework.
A persona-grounded dialogue model aims to improve the quality of responses to promote user engagement. However, because the given personas are mostly short and limited to only a few informative words, it is challenging to utilize them to generate diverse responses. To tackle this problem, we propose a novel persona expansion framework, Concept-based Persona eXpansion (CPX). CPX takes the original persona as input and generates expanded personas that contain conceptually rich content. We constitute CPX with two task modules: 1) Concept Extractor and 2) Sentence Generator. To train these modules, we exploit the duality of two tasks with a commonsense dataset consisting of a concept set and the corresponding sentences which contain the given concepts. Extensive experiments on persona expansion and response generation show that our work sufficiently contributes to improving the quality of responses in diversity and richness.
Each utterance in multi-turn empathetic dialogues has features such as emotion, keywords, and utterance-level meaning. Feature transitions between utterances occur naturally. However, existing approaches fail to perceive the transitions because they extract features for the context at the coarse-grained level. To solve the above issue, we propose a novel approach of recognizing feature transitions between utterances, which helps understand the dialogue flow and better grasp the features of utterance that needs attention. Also, we introduce a response generation strategy to help focus on emotion and keywords related to appropriate features when generating responses. Experimental results show that our approach outperforms baselines and especially, achieves significant improvements on multi-turn dialogues.
The recent surge of text-based online counseling applications enables us to collect and analyze interactions between counselors and clients. A dataset of those interactions can be used to learn to automatically classify the client utterances into categories that help counselors in diagnosing client status and predicting counseling outcome. With proper anonymization, we collect counselor-client dialogues, define meaningful categories of client utterances with professional counselors, and develop a novel neural network model for classifying the client utterances. The central idea of our model, ConvMFiT, is a pre-trained conversation model which consists of a general language model built from an out-of-domain corpus and two role-specific language models built from unlabeled in-domain dialogues. The classification result shows that ConvMFiT outperforms state-of-the-art comparison models. Further, the attention weights in the learned model confirm that the model finds expected linguistic patterns for each category.