This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Dong-KyuChae
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Multimodal Large Language Models (MLLMs), are recent advancement of Vision-Language Models (VLMs) that have driven major advances in video understanding. However, their vulnerability to adversarial tampering and manipulations remains underexplored. To address this gap, we introduce MVTamperBench, a benchmark that systematically evaluates MLLM robustness against five prevalent tampering techniques: rotation, masking, substitution, repetition, and dropping; based on real-world visual tampering scenarios such as surveillance interference, social media content edits, and misinformation injection. MVTamperBench comprises ~3.4K original videos, expanded into over ~17K tampered clips covering 19 distinct video manipulation tasks. This benchmark challenges models to detect manipulations in spatial and temporal coherence. We evaluate 45 recent MLLMs from 15+ model families. We reveal substantial variability in resilience across tampering types and show that larger parameter counts do not necessarily guarantee robustness. MVTamperBench sets a new benchmark for developing tamper-resilient MLLM in safety-critical applications, including detecting clickbait, preventing harmful content distribution, and enforcing policies on media platforms. We release all code, data, and benchmark to foster open research in trustworthy video understanding.
Existing Artificial Olfaction (AO) primarily serves two tasks: Odor Classification (OC) and Odor Source Localization (OSL). Both tasks w.r.t. indoor event detection scenarios are studied either using a single electronic nose (e-nose) mounted on the ceiling or mobile robot(s) equipped with e-noses. However, they are not compatible with smart home scenarios due to diverse obstacles (e.g., chairs and tables) and the need for natural interaction. In this paper, we explore the feasibility and usability of a Conversational Interfaces for Artificial Olfaction (CIAO) system using Large Language Models (LLMs) in Smart Home. We made the first olfaction-oriented corpus for LLM evaluation, as well as an olfaction dataset via a self-developed olfactory sensory network. We train the dedicated models for OSL and OC using the dataset and integrate them into a tool within the MCP (Model Context Protocol) server. Five commercial LLMs are used as MCP clients for experiments and validation. Our experimental results indicate that our CIAO system is technically feasible and applicable. Besides, we observe that ChatGPT-4o relatively outperforms in terms of both answer quality and overall LLM usability in pervasive IoT scenarios. Qwen-Plus, in contrast, appears to be a promising solution for robot-compatible applications. To our knowledge, this work is the first effort to bring forward conversational interfaces for AO, enabling multi-turn conversations with contexts beyond one-off question answering. Our codes and partial corpus are available at https://github.com/HokyeeJau/CIAO.
Enterprise customers are increasingly adopting Large Language Models (LLMs) for critical communication tasks, such as drafting emails, crafting sales pitches, and composing casual messages. Deploying such models across different regions requires them to understand diverse cultural and linguistic contexts and generate safe and respectful responses. For enterprise applications, it is crucial to mitigate reputational risks, maintain trust, and ensure compliance by effectively identifying and handling unsafe or offensive language. To address this, we introduce SweEval, a benchmark simulating real-world scenarios with variations in tone (positive or negative) and context (formal or informal). The prompts explicitly instruct the model to include specific swear words while completing the task. This benchmark evaluates whether LLMs comply with or resist such inappropriate instructions and assesses their alignment with ethical frameworks, cultural nuances, and language comprehension capabilities. In order to advance research in building ethically aligned AI systems for enterprise use and beyond, we release the dataset and code: https://github.com/amitbcp/multilingual_profanity.
In this paper, we proposes a simple, tricky method to improve sentence representation of unsupervised contrastive learning. Even though contrastive learning has achieved great performances in both visual representation learning (VRL) and sentence representation learning (SRL) fields, we focus on the fact that there is a gap between characteristics and training dynamics of VRL and SRL. We first examine the role of temperature to bridge the gap between VRL and SRL, and find some temperature-dependent elements in SRL; i.e., a higher temperature causes overfitting of the uniformity while improving the alignment in earlier phase of training. Then, we design a temperature cool-down technique based on this observation, which helps PLMs to be more suitable for contrastive learning via preparation of uniform representation space. Our experimental results on widely-utilized benchmarks demonstrate the effectiveness and extensiblity of our method.
This paper aims to investigate the possibility of exploiting original semantic features of PLMs (pre-trained language models) during contrastive learning in the context of SRL (sentence representation learning). In the context of feature modification, we identified a method called IFM (implicit feature modification), which reduces the tendency of contrastive models for VRL (visual representation learning) to rely on feature-suppressing shortcut solutions. We observed that IFM did not work well for SRL, which may be due to differences between the nature of VRL and SRL. We propose BYOP, which boosts well-represented features, taking the opposite idea of IFM, under the assumption that SimCSE’s dropout-noise-based augmentation may be too simple to modify high-level semantic features, and that the features learned by PLMs are semantically meaningful and should be boosted, rather than removed. Extensive experiments lend credence to the logic of BYOP, which considers the nature of SRL.
Contrastive learning has been successfully adopted in VRL (visual representation learning) by constructing effective contrastive pairs. A promising baseline SimCSE has made notable breakthroughs in unsupervised SRL (sentence representation learning) following the success of contrastive learning. However, considering the difference between VRL and SRL, there is still room for designing a novel contrastive framework specially targeted for SRL. We pro- pose a novel angle-based similarity function for contrastive objective. By examining the gra- dient of our contrastive objective, we show that an angle-based similarity function incites better training dynamics on SRL than the off-the-shelf cosine similarity: (1) effectively pulling a posi- tive instance toward an anchor instance in the early stage of training and (2) not excessively repelling a false negative instance during the middle of training. Our experimental results on widely-utilized benchmarks demonstrate the ef- fectiveness and extensibility of our novel angle- based approach. Subsequent analyses establish its improved sentence representation power.
Knowledge Graphs (KGs) have proven essential in information processing and reasoning applications because they link related entities and give context-rich information, supporting efficient information retrieval and knowledge discovery; presenting information flow in a very effective manner. Despite being widely used globally, Bangla is relatively underrepresented in KGs due to a lack of comprehensive datasets, encoders, NER (named entity recognition) models, POS (part-of-speech) taggers, and lemmatizers, hindering efficient information processing and reasoning applications in the language. Addressing the KG scarcity in Bengali, we propose BanglaAutoKG, a pioneering framework that is able to automatically construct Bengali KGs from any Bangla text. We utilize multilingual LLMs to understand various languages and correlate entities and relations universally. By employing a translation dictionary to identify English equivalents and extracting word features from pre-trained BERT models, we construct the foundational KG. To reduce noise and align word embeddings with our goal, we employ graph-based polynomial filters. Lastly, we implement a GNN-based semantic filter, which elevates contextual understanding and trims unnecessary edges, culminating in the formation of the definitive KG. Empirical findings and case studies demonstrate the universal effectiveness of our model, capable of autonomously constructing semantically enriched KGs from any text. Data and code are available here: https://github.com/azminewasi/BanglaAutoKG
Recently, sentiment-aware pre-trained language models (PLMs) demonstrate impressive results in downstream sentiment analysis tasks. However, they neglect to evaluate the quality of their constructed sentiment representations; they just focus on improving the fine-tuning performance, which overshadows the representation quality. We argue that without guaranteeing the representation quality, their downstream performance can be highly dependent on the supervision of the fine-tuning data rather than representation quality. This problem would make them difficult to foray into other sentiment-related domains, especially where labeled data is scarce. We first propose Sentiment-guided Textual Similarity (SgTS), a novel metric for evaluating the quality of sentiment representations, which is designed based on the degree of equivalence in sentiment polarity between two sentences. We then propose SentiCSE, a novel Sentiment-aware Contrastive Sentence Embedding framework for constructing sentiment representations via combined word-level and sentence-level objectives, whose quality is guaranteed by SgTS. Qualitative and quantitative comparison with the previous sentiment-aware PLMs shows the superiority of our work. Our code is available at: https://github.com/nayohan/SentiCSE