This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
DongHuang
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Training LLMs with Mixture-of-Experts (MoE) architecture on long sequences poses significant challenges due to the all-to-all communication bottleneck of expert parallelism. While existing approaches attempt to hide the communication costs in computation through token-level pipelining within MoE layers, their effectiveness is limited by the insufficient computation. We present FoldMoE, a high-performance MoE training system that enables token-level overlapping across entire Transformer blocks through novel attention-MoE pipelining. We propose an efficient pipeline schedule, and a novel token buffering design to decouple attention and MoE layer partitioning, along with a time-uniform micro-batching strategy for enhanced efficiency. Evaluations on GPT-MoE models with sequences up to 32K tokens show that FoldMoE achieves up to 1.49x and 2.72x speedup over state-of-the-art token-level overlapping and non-overlapping baselines respectively.
Large Language Models (LLMs) have reshaped code generation by synergizing their exceptional comprehension of natural language and programming syntax, thereby substantially boosting developer productivity. These advancements have prompted numerous efforts to quantitatively evaluate their coding capabilities. However, persistent challenges, such as benchmark leakage, data dissipation, and limited system accessibility, continue to impede a timely and accurate assessment. To address these limitations, we introduce CodeArena, an online evaluation framework tailored for LLM code generation. Its key innovation is a collective evaluation mechanism, which dynamically recalibrates individual model scores based on the holistic performance of all participating models, mitigating score biases caused by widespread benchmark leakage. In addition, CodeArena ensures open access to all submitted solutions and test cases and provides automation-friendly APIs to streamline the code evaluation workflow. Our main contributions are: (1) a collective evaluation system for unbiased assessment, (2) a public repository of solutions and test cases, and (3) automation-ready APIs for seamless integration.
Reinforcement learning (RL) has been widely adopted to enhance the performance of large language models (LLMs) on Text-to-SQL tasks. However, existing methods often rely on execution-based or LLM-based Bradley–Terry reward models. The former suffers from high execution latency caused by repeated database calls, whereas the latter imposes substantial GPU memory overhead, both of which significantly hinder the efficiency and scalability of RL pipelines. To this end, we propose a novel reward model framework for RL-based Text-to-SQL named Graph-Reward-SQL, which employs the GMNScore outcome reward model. We leverage SQL graph representations to provide accurate reward signals while significantly reducing time cost and GPU memory usage. Building on this foundation, we further introduce StepRTM, a stepwise reward model that provides intermediate supervision over Common Table Expression (CTE) subqueries. This encourages both functional correctness and readability of SQL. Extensive comparative and ablation experiments on standard benchmarks, including Spider and BIRD, demonstrate that our method consistently outperforms existing reward models.