Divya Prakash


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2019

pdf bib
Vernon-fenwick at SemEval-2019 Task 4: Hyperpartisan News Detection using Lexical and Semantic Features
Vertika Srivastava | Ankita Gupta | Divya Prakash | Sudeep Kumar Sahoo | Rohit R.R | Yeon Hyang Kim
Proceedings of the 13th International Workshop on Semantic Evaluation

In this paper, we present our submission for SemEval-2019 Task 4: Hyperpartisan News Detection. Hyperpartisan news articles are sharply polarized and extremely biased (onesided). It shows blind beliefs, opinions and unreasonable adherence to a party, idea, faction or a person. Through this task, we aim to develop an automated system that can be used to detect hyperpartisan news and serve as a prescreening technique for fake news detection. The proposed system jointly uses a rich set of handcrafted textual and semantic features. Our system achieved 2nd rank on the primary metric (82.0% accuracy) and 1st rank on the secondary metric (82.1% F1-score), among all participating teams. Comparison with the best performing system on the leaderboard shows that our system is behind by only 0.2% absolute difference in accuracy.

pdf bib
SolomonLab at SemEval-2019 Task 8: Question Factuality and Answer Veracity Prediction in Community Forums
Ankita Gupta | Sudeep Kumar Sahoo | Divya Prakash | Rohit R.R | Vertika Srivastava | Yeon Hyang Kim
Proceedings of the 13th International Workshop on Semantic Evaluation

We describe our system for SemEval-2019, Task 8 on “Fact-Checking in Community Question Answering Forums (cQA)”. cQA forums are very prevalent nowadays, as they provide an effective means for communities to share knowledge. Unfortunately, this shared information is not always factual and fact-verified. In this task, we aim to identify factual questions posted on cQA and verify the veracity of answers to these questions. Our approach relies on data augmentation and aggregates cues from several dimensions such as semantics, linguistics, syntax, writing style and evidence obtained from trusted external sources. In subtask A, our submission is ranked 3rd, with an accuracy of 83.14%. Our current best solution stands 1st on the leaderboard with 88% accuracy. In subtask B, our present solution is ranked 2nd, with 58.33% MAP score.