This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
DirkVan Compernolle
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
This paper describes an alternative approach to morphological language modeling, which incorporates constraints on the morphological production of new words. This is done by applying the constraints as a preprocessing step in which only one morphological production rule can be applied to an extended lexicon of knownmorphemes, lemmas and word forms. This approach is used to extend the CELEX Dutch morphological database, so that a higher coverage can be reached on a largecorpus of Dutch newspaper articles. We present experimental results on the coverage of this extended database and use the extension to further evaluate our morphologicalsystem, as well as the impact of the constraints on the coverage of out-of-vocabulary words.
This paper describes some important modifications to the Celex morphological database in the context of the FLaVoR project. FLaVoR aims to develop a novel modular framework for speech recognition, enabling the integration of complex linguistic knowledge sources, such as a morphological model. Morphology is a fairly unexploited linguistic information source speech recognizers could benefit from. This is especially true for languages which allow for a rich set of morphological operations, such as our target language Dutch. In this paper we focus on the exploitation of the Celex Dutch morphological database as the information source underlying two different morphological analyzers being developed within the project. Although the Celex database provides a valuable source of morphological information for Dutch, many modifications were necessary before it could be practically applied. We identify major problems, discuss the implemented solutions and finally experimentally evaluate the effect of our modifications to the database.
The CGN corpus (Corpus Gesproken Nederlands/Corpus Spoken Dutch) is a large speech corpus of contemporary Dutch as spoken in Belgium (3.3 million words) and in the Netherlands (5.6 million words). Due to its size, manual phonemic annotation was limited to 10% of the data and automatic systems were used to complement this data. This paper describes the automatic generation of the phonemic annotations and the corresponding segmentations. First, we detail the processes used to generate possible pronunciations for each sentence and to select to most likely one. Next, we identify the remaining difficulties when handling the CGN data and explain how we solved them. We conclude with an evaluation of the quality of the resulting transcriptions and segmentations.