This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
DirkJohannßen
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
The corona pandemic and countermeasures such as social distancing and lockdowns have confronted individuals with new challenges for their mental health and well-being. It can be assumed that the Jungian psychology types of extraverts and introverts react differently to these challenges. We propose a Bi-LSTM model with an attention mechanism for classifying introversion and extraversion from German tweets, which is trained on hand-labeled data created by 335 participants. With this work, we provide this novel dataset for free use and validation. The proposed model achieves solid performance with F1 = .72. Furthermore, we created a feature engineered logistic model tree (LMT) trained on hand-labeled tweets, to which the data is also made available with this work. With this second model, German tweets before and during the pandemic have been investigated. Extraverts display more positive emotions, whilst introverts show more insight and higher rates of anxiety. Even though such a model can not replace proper psychological diagnostics, it can help shed light on linguistic markers and to help understand introversion and extraversion better for a variety of applications and investigations.
The COVID-19 pandemic has caused international social tension and unrest. Besides the crisis itself, there are growing signs of rising conflict potential of societies around the world. Indicators of global mood changes are hard to detect and direct questionnaires suffer from social desirability biases. However, so-called implicit methods can reveal humans intrinsic desires from e.g. social media texts. We present psychologically validated social unrest predictors and replicate scalable and automated predictions, setting a new state of the art on a recent German shared task dataset. We employ this model to investigate a change of language towards social unrest during the COVID-19 pandemic by comparing established psychological predictors on samples of tweets from spring 2019 with spring 2020. The results show a significant increase of the conflict indicating psychometrics. With this work, we demonstrate the applicability of automated NLP-based approaches to quantitative psychological research.
Implicit motives allow for the characterization of behavior, subsequent success and long-term development. While this has been operationalized in the operant motive test, research on motives has declined mainly due to labor-intensive and costly human annotation. In this study, we analyze over 200,000 labeled data items from 40,000 participants and utilize them for engineering features for training a logistic model tree machine learning model. It captures manually assigned motives well with an F-score of 80%, coming close to the pairwise annotator intraclass correlation coefficient of r = .85. In addition, we found a significant correlation of r = .2 between subsequent academic success and data automatically labeled with our model in an extrinsic evaluation.