Diogo Gomes


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
Embeddings for Named Entity Recognition in Geoscience Portuguese Literature
Bernardo Consoli | Joaquim Santos | Diogo Gomes | Fabio Cordeiro | Renata Vieira | Viviane Moreira
Proceedings of the Twelfth Language Resources and Evaluation Conference

This work focuses on Portuguese Named Entity Recognition (NER) in the Geology domain. The only domain-specific dataset in the Portuguese language annotated for NER is the GeoCorpus. Our approach relies on BiLSTM-CRF neural networks (a widely used type of network for this area of research) that use vector and tensor embedding representations. Three types of embedding models were used (Word Embeddings, Flair Embeddings, and Stacked Embeddings) under two versions (domain-specific and generalized). The domain specific Flair Embeddings model was originally trained with a generalized context in mind, but was then fine-tuned with domain-specific Oil and Gas corpora, as there simply was not enough domain corpora to properly train such a model. Each of these embeddings was evaluated separately, as well as stacked with another embedding. Finally, we achieved state-of-the-art results for this domain with one of our embeddings, and we performed an error analysis on the language model that achieved the best results. Furthermore, we investigated the effects of domain-specific versus generalized embeddings.