Dingku Oinam


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
DELAB-IIITM WMT25: Enhancing Low-Resource Machine Translation for Manipuri and Assamese
Dingku Oinam | Navanath Saharia
Proceedings of the Tenth Conference on Machine Translation

This paper describe DELAB-IIITM’s submission system for the WMT25 machine translation shared task. We participated in two sub-task of the Indic Translation Task, en↔as and en↔mn i.e. Assamese (Indo Aryan language) and Manipuri (Tibeto Burman language) with a total of six translation directions, including mn→en, mn←en, en→as, en←as, mn→as, mn←as. Our fine tuning process aims to leverages the pretrained multilingual NLLB-200 model, a machine translation model developed by Meta AI as part of the No Language Left Behind (NLLB) project, through two main development, Synthetic parallel corpus creation and Strategic Fine-tuning. The Fine-tuning process involves strict data cleaning protocols, Adafactor optimizer with low learning rate(2e-5), 2 training epochs, train-test data splits to prevent overfitting, and Seq2SeqTrainer framework. The official test data was used to generate the target language with our fine-tuned model. Experimental results show that our method improves the BLEU scores for translation of these two language pairs. These findings confirm that back-translation remains challenging, largely due to morphological complexity and limited data availability.