Dinghui Mao


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
Multiple Instance Learning for Offensive Language Detection
Jiexi Liu | Dehan Kong | Longtao Huang | Dinghui Mao | Hui Xue
Findings of the Association for Computational Linguistics: EMNLP 2022

Automatic offensive language detection has become a crucial issue in recent years. Existing researches on this topic are usually based on a large amount of data annotated at sentence level to train a robust model. However, sentence-level annotations are expensive in practice as the scenario expands, while there exist a large amount of natural labels from historical information on online platforms such as reports and punishments. Notably, these natural labels are usually in bag-level corresponding to the whole documents (articles, user profiles, conversations, etc.). Therefore, we target at proposing an approach capable of utilizing the bag-level labeled data for offensive language detection in this study. For this purpose, we formalize this task into a multiple instance learning (MIL) problem. We break down the design of existing MIL methods and propose a hybrid fusion MIL model with mutual-attention mechanism. In order to verify the validity of the proposed method, we present two new bag-level labeled datasets for offensive language detection: OLID-bags and MINOR. Experimental results based on the proposed datasets demonstrate the effectiveness of the mutual-attention method at both sentence level and bag level.